Local Law for Eigenvalues of Random Regular Bipartite Graphs

  • Linh V. TranEmail author


In this paper, we study the local law for eigenvalues of large random regular bipartite graphs with degree growing moderately fast. We prove that the empirical spectral distribution of the adjacency matrix converges in probability to a scaled down copy of the Marchenko–Pastur distribution on intervals of short length.


Random bipartite regular graphs Marchenko–Pastur law Wishart matrix 

Mathematics Subject Classification

05C80 60G57 



The author thanks I. Dumitriu for bringing the problem to his attention. Part of this work was done while the author was at the Mathematics Department, University of Washington. The author also thanks the anonymous referee who provided many useful suggestions.


  1. 1.
    Bai, Z.D., Yao, J., Miao, B.: Convergence rates of spectral distributions of large sample covariance matrices. SIAM J. Matrix Anal. Appl. 25(1), 105–127 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Dumitriu, I., Johnson, T.: The Marcenko–Pastur law for sparse random bipartite biregular graphs. Random Struct. Algorithms 48(2), 313–340 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Erdős, L., Knowles, A., Yau, H.-T., Yin, J.: Spectral statistics of Erdős-Rényi graphs II: eigenvalue spacing and the extreme eigenvalues. Commun. Math. Phys. 314(3), 587–640 (2012)CrossRefzbMATHGoogle Scholar
  4. 4.
    Erdős, L., Knowles, A., Yau, H.-T., Yin, J.: Spectral statistics of Erdős-Rényi graphs I: local semicircle law. Ann. Probab. 41(3B), 2279–2375 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Friedman, J.: A proof of Alon’s second eigenvalue conjecture. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pp. 720–724. ACM (2003)Google Scholar
  6. 6.
    Götze, F., Tikhomirov, A.: Rate of convergence in probability to the Marchenko–Pastur law. Bernoulli 10(3), 503–548 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Guionnet, A., Zeitouni, O.: Concentration of the spectral measure for large matrices. Electron. Commun. Probab. 5, 119–136 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    McKay, B., Wang, X.: Asymptotic enumeration of 0–1 matrices with equal row sums and equal column sums. Linear Algebra Appl. 373, 273–288 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    McKay, B.D.: The expected eigenvalue distribution of a large regular graph. Linear Algebra Appl. 40, 203–216 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Tran, L.V., Vu, V.H., Wang, K.: Sparse random graphs: eigenvalues and eigenvectors. Random Struct. Algorithms 42(1), 110–134 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2019

Authors and Affiliations

  1. 1.International University - Vietnam National University HCMCHo Chi Minh CityVietnam

Personalised recommendations