Strong Edge-Coloring of Pseudo-Halin Graphs

  • Xiangwen LiEmail author
  • Jian-Bo Lv


A strong edge-coloring of a graph G is a proper edge-coloring such that every path of length 3 uses three different colors. The strong chromatic index of a graph G, denoted by \(\chi _{s}^\prime (G)\), is the minimum number of colors needed for a strong edge-coloring of G. In this paper, we show that \(\chi _{s}^\prime (G)\le 3\Delta -2\) for any pseudo-Halin graph G with \(\Delta \ge 4\).


Strong edge-coloring Strong chromatic index Halin graphs Pseudo-Halin graphs 



The authors would like to thank the anonymous referees for the valuable comments which improve the presentation.


  1. 1.
    Andersen, L.D.: The strong chromatic index of a cubic graph is at most 10. Discrete Math. 108(1–3), 231–252 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bensmail, J., Harutyunyan, A., Hocquard, H., Valicov, P.: Strong edge-colouring of sparse planar graphs. Discrete Appl. Math. 179, 229–234 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Borodin, O.V., Ivanova, A.O.: Precise upper bound for the strong edge chromatic number of sparse planar graphs. Discuss. Math. Graph Theory 33, 759–770 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bruhn, H., Joos, F.: A stronger bound for the strong chromatic index. arXiv:1504.02583
  5. 5.
    Cranston, D.W.: Strong edge-coloring of graphs with maximum degree 4 using 22 colors. Discrete Math. 306(21), 2772–2778 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chang, G.J., Liu, D.D.F.: Strong edge-coloring for cubic Halin graphs. Discrete Math. 312, 1468–1475 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Erdős, P.: Problems and results in combinatorial analysis and graph theory. Discrete Math. 72(1–3), 81–92 (1988)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Erdős, P., Neštřil, J.: Problem. In: Halaász, G., Sós, V.T. (eds.) Irregularities of Partitions, pp. 162–163. Springer, Berlin (1989)Google Scholar
  9. 9.
    Fouquet, J.L., Jolivet, J.L.: Strong edge-colorings of graphs and applications to multi-k-gons. Ars Comb. 16A., 141–150 (1983)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Fouquet, J.L., Jolivet, J.L.: Strong edge-coloring of cubic planar graphs. Prog. Graph Theory 111, 247–264 (1984)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Faudree, R.J., Gyárfas, A., Schelp, R.H., Tuza, Zs: The strong chromatic index of graphs. Ars Comb. 29B, 205–211 (1990)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Hudák, D., Lužar, B., Soták, R., Škrekovski, R.: Strong edge-coloring of planar graphs. Discrete Math. 324, 41–49 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hocquard, H., Valicov, P.: Strong edge colouring of subcubic graphs. Discrete Appl. Math. 159(15), 1650–1657 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hocquard, H., Montassier, M., Raspaud, A., Valicov, P.: On strong edge-colouring of subcubic graphs. Discrete Appl. Math. 161(16–17), 2467–2479 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Horák, P., Qing, H., Trotter, W.T.: Induced matchings in cubic graphs. J. Graph Theory 17(2), 151–160 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kostochka, A.V., Li, X., Ruksasakchai, W., Santana, M., Wang, T., Yu, G.: Strong chromatic index of subcubic planar multigraphs. Eur. J. Comb. 51, 380–397 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lai, H.H., Lih, K.W., Tsai, P.Y.: The strong chromatic index of Halin graphs. Discrete Math. 312, 1536–1541 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lih, K.W., Liu, D.D.F.: On the strong chromatic index of cubic Halin graphs. Appl. Math. Lett. 25, 898–901 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Liu, L.Z., Zhang, Z.F.: On the properties and chromatic of pseudo-Halin graphs. J. Lanzhou Tailway Inst. 20, 105–107 (2001)Google Scholar
  20. 20.
    Molloy, M., Reed, B.: A bound on the strong chromatic index of a graph. J. Comb. Theory Ser. B 69, 519–530 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Shiu, W.C., Lam, P.C.B., Tam, W.K.: On strong chromatic index of Halin graphs. J. Comb. Math. Comb. Comput. 57, 211–222 (2006)MathSciNetzbMATHGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2019

Authors and Affiliations

  1. 1.Department of MathematicsCentral China Normal UniversityWuhanChina
  2. 2.Department of MathematicsGuangxi Normal UniversityGuilinChina

Personalised recommendations