Fundamental Theorems of Doi–Hopf Modules in a Nonassociative Setting

  • J. N. Alonso Álvarez
  • J. M. Fernández Vilaboa
  • R. González Rodríguez


In this paper, we introduce the notion of weak nonassociative Doi–Hopf module and give the Fundamental Theorem of Hopf modules in this setting. Also, we prove that there exists a categorical equivalence that admits as particular instances the ones constructed in the literature for Hopf algebras, weak Hopf algebras, Hopf quasigroups and weak Hopf quasigroups.


Hopf algebra Weak Hopf algebra Hopf quasigroup Weak Hopf quasigroup Doi–Hopf module Fundamental Theorem 

Mathematics Subject Classification

18D10 16T05 17A30 20N05 



The authors were supported by Ministerio de Economía y Competitividad (Spain), grant MTM2016-79661-P. AEI/FEDER, UE, support included (Homología, homotopía e invariantes categóricos en grupos y álgebras no asociativas).


  1. 1.
    Albuquerque, H., Majid, S.: Quasialgebra structure of the octonions. J. Algebra 220, 188–224 (1999)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alonso Álvarez, J.N., Fernández Vilaboa, J.M., González Rodríguez, R., Soneira Calvo, C.: Projections and Yetter–Drinfel’d modules over Hopf (co)quasigroups. J. Algebra 443, 153–199 (2015)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alonso Álvarez, J.N., Fernández Vilaboa, J.M., González Rodríguez, R., Soneira Calvo, C.: Cleft comodules over Hopf quasigroups. Commun. Contemp. Math. 17, 1550007 (2015)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Alonso Álvarez, J.N., Fernández Vilaboa, J.M., González Rodríguez, R.: Weak Hopf quasigroups. Asian J. Math. 20, 665–694 (2016)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Alonso Álvarez, J.N., Fernández Vilaboa, J.M., González Rodríguez, R.: Cleft and Galois extensions associated to a weak Hopf quasigroup. J. Pure Appl. Algebra 220, 1002–1034 (2016)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Alonso Álvarez, J.N., Fernández Vilaboa, J.M., González Rodríguez, R.: A characterization of weak Hopf (co)quasigroups. Mediterr. J. Math. 13, 3747–3764 (2016)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Alonso Álvarez, J.N., Fernández Vilaboa, J.M., González Rodríguez, R.: Strong Hopf modules for weak Hopf quasigroups. Colloq. Math. Wars. 148, 231–246 (2017)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Alonso Álvarez J.N., Fernández Vilaboa J.M., González Rodríguez, R.: Multiplication alteration by two-cocycles. The nonassociative version (2017). arXiv:1703.01829
  9. 9.
    Benkart, G., Madariaga, S., Pérez-Izquierdo, J.M.: Hopf algebras with triality. Trans. Am. Math. Soc. 365, 1001–1023 (2012)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Böhm, G., Nill, F., Szlachányi, K.: Weak Hopf algebras, I. Integral theory and \(C^{\ast }\)-structure. J. Algebra 221, 385–438 (1999)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Böhm, G.: Doi–Hopf modules over weak Hopf algebras. Commun. Algebra 10, 4687–4698 (2000)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Brzeziński, T.: Hopf modules and the fundamental theorem for Hopf (co)quasigroups. Int. Electron. J. Algebra 8, 114–128 (2010)MathSciNetMATHGoogle Scholar
  13. 13.
    Brzeziński, T., Jiao, Z.: R-smash products of Hopf quasigroups. Arab. J. Math. 1, 39–46 (2012)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Brzeziński, T., Jiao, Z.: Actions of Hopf quasigroups. Commun. Algebra 40, 681–696 (2012)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Doi, Y.: On the structure of relative Hopf modules. Commun. Algebra 11, 243–255 (1983)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Doi, Y., Takeuchi, M.: Hopf-Galois extensions of algebras, the Miyashita-Ulbrich action, and Azumaya algebras. J. Algebra 121, 488–516 (1989)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Fang, X., Torrecillas, B.: Twisted smash products and L–R smash products for biquasimodule Hopf quasigroups. Commun. Algebra 42, 4204–4234 (2014)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Henker H.: Module categories over quasi-Hopf algebras and weak Hopf algebras and the projectivity of Hopf modules. Dissertation for the Doctoral Degree. Munich: LMU Munich, (2011) (Available in
  19. 19.
    Klim, J.: Bicrossproduct Hopf quasigroups. Comment. Math. Univ. Carolinae 51, 287–304 (2010)MathSciNetMATHGoogle Scholar
  20. 20.
    Jiao, Z., Meng, H.: Ore extensions of Hopf coquasigroups. Math. Notes 95, 338–345 (2014)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Jiao, Z., Zhao, X.: Almost cocommutative and quasitriangular Hopf coquasigroups. J. Algebra Appl. 13, 1450010 (2014)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras, vol. I, p. 13. Academic Press, New York (1983)MATHGoogle Scholar
  23. 23.
    Klim, J., Majid, S.: Hopf quasigroups and the algebraic 7-sphere. J. Algebra 323, 3067–3110 (2010)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Larson, R.G., Sweedler, M.E.: An associative orthogonal bilinear form for Hopf algebras. Am. J. Math. 91, 75–93 (1969)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Mac Lane S.: Categories for the Working Mathematician. GTM 5. Springer, New-York (1971)Google Scholar
  26. 26.
    Mostovoy, J., Pérez-Izquierdo, J.M., Shestakov, I.P.: Hopf algebras in non associative Lie theory. Bull. Math. Sci. 4, 129–173 (2014)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Meyer, R.: Local and analytic cyclic homology. EMS Tracts Math. 3, 1, 13, 42 (2007)MathSciNetGoogle Scholar
  28. 28.
    Pérez-Izquierdo, J.M., Shestakov, I.P.: An envelope for Malcev algebras. J. Algebra 272, 379–393 (2004)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Pérez-Izquierdo, J.M.: Algebras, hyperalgebras, nonassociative bialgebras and loops. Adv. Math. 208, 834–876 (2007)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Smith, J.D.H.: One-sided Quantum quasigroups and loops. Demonstr. Math. 48, 620–636 (2015)MathSciNetMATHGoogle Scholar
  31. 31.
    Smith, J.D.H.: Quantum quasigroups and loops. J. Algebra 456, 46–75 (2016)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Smith, J.D.H.: Quantum idempotence, distributivity, and the Yang–Baxter equation. Comment. Math. Univ. Carolin. 57, 567–583 (2016)MathSciNetMATHGoogle Scholar
  33. 33.
    Smith, J.D.H.: Quantum quasigroups and the quantum Yang–Baxter equation. Axioms 5, 25 (2016)CrossRefGoogle Scholar
  34. 34.
    Sweedler, M.E.: Hopf Algebras. Benjamin, New York (1969)MATHGoogle Scholar
  35. 35.
    Tvalavadze, M.V., Bremner, M.R.: Enveloping algebras of solvable Malcev algebras of dimension five. Commun. Algebra 39, 1532–4125 (2011)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Takeuchi, M.: Relative Hopf-modules-equivalences and freeness criteria. J. Algebra 60, 452–471 (1979)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Zhang, L., Zhu, S.: Fundamental theorems of weak Doi-Hopf modules and semisimple weak smash product Hopf algebras. Commun. Algebra 32, 3403–3415 (2004)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2018

Authors and Affiliations

  • J. N. Alonso Álvarez
    • 1
  • J. M. Fernández Vilaboa
    • 2
  • R. González Rodríguez
    • 3
  1. 1.Departamento de MatemáticasUniversidad de VigoVigoSpain
  2. 2.Departamento de ÁlxebraUniversidad de Santiago de Compostela.Santiago de CompostelaSpain
  3. 3.Departamento de Matemática Aplicada IIUniversidad de VigoVigoSpain

Personalised recommendations