Advertisement

Arnoux–Rauzy Substitutions and Palindrome Words

  • Hamdi Ammar
  • Tarek SellamiEmail author
Article
  • 51 Downloads

Abstract

We consider \(\sigma _1, \sigma _2, \sigma _3\) the Arnoux–Rauzy substitutions. In this paper we study Palindrome words on the Arnoux–Rauzy substitutions sequences. We prove that the product \(\sigma _i\sigma _j^{k_2}\sigma _s^{k_3}(i)\) is a Palindrome word, where \(i,j,s\in \{1,2,3 ;i\ne j\ne s\}\) and \(k_2,k_3\in {\mathbb {N}}^*\).

Keywords

Substitutions Arnoux–Rauzy substitutions S-adic Combinatorics on words Finite words 

Mathematics Subject Classification

28A80 11B85 37B10 

References

  1. 1.
    Aloui, K., Mauduit, Ch., Mkaouar, M.: Somme des chiffres et répartition dans les classes de congruence pour les palindromes elipsphiques. Act. Math. Hungar. 151(2), 409–455 (2017)CrossRefzbMATHGoogle Scholar
  2. 2.
    Arnoux, P., Ito, S.: Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin 8, 181–207 (2001)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Arnoux, P., Rauzy, G.: Représentation géométrique de suites de complexité 2n\(+\)1. Bull. Soc. Math. Fr. 119, 199–215 (1991)CrossRefzbMATHGoogle Scholar
  4. 4.
    Ayadi, K., Taktak, F.: On the continued fraction expansion of some hyper quadratic functions. Turk. J. Math. 38, 191–202 (2014).  https://doi.org/10.3906/mat-1303-61 CrossRefzbMATHGoogle Scholar
  5. 5.
    Berstel, J.: Recent Results in Sturmian Words, Developments in Language Theory, II (Magdeburg 1995), pp. 13–24. World Scientific Publishing, River Edge (1996)zbMATHGoogle Scholar
  6. 6.
    Coven, E.M., Hedlund, G.A.: Sequences with minimal block growth. Math. Syst. Theory 7, 138–153 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Droubay, X., Pirillo, G.: Palindromes and Sturmian words. Theor. Comput. Sci. 223(223), 73–85 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hedlund, G.A.: Sturmian minimal sets. Am. J. Math. 66, 605–620 (1944)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Morse, M., Hedlund, G.A.: Symbolic dynamics. Am. J. Math. 60, 815–866 (1938)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Morse, M., Hedlund, G.A.: Symbolic dynamics II. Sturmian trajectories. Am. J. Math. 62, 1–142 (1940)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Sellami, T.: Balanced pair algorithm for a class of cubic substitutions. Turk. J. Math. 39, 91–102 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Sciences of SfaxSfax UniversitySfaxTunisia

Personalised recommendations