Advertisement

Explicit Iteration Methods for Solving Variational Inequalities in Banach Spaces

  • Pham Thanh Hieu
  • Nguyen Thi Thu Thuy
  • Jean Jacques StrodiotEmail author
Article
  • 91 Downloads

Abstract

The problem of finding a solution of a variational inequality over the set of common fixed points of a nonexpansive semigroup is considered in a real and uniformly convex Banach space without imposing the sequential weak continuity of the normalized duality mapping. Two new explicit iterative methods are introduced based on the steepest-descent method, and conditions are given to obtain their strong convergence. A numerical example is showed to illustrate the convergence analysis of the proposed methods.

Keywords

Variational inequality Common fixed point Nonexpansive semigroup Accretive mapping Explicit method 

Mathematics Subject Classification

41A65 47H17 47H20 

Notes

Acknowledgements

The authors are very grateful to the referees for their useful comments, which helped to improve the paper.

References

  1. 1.
    Agarwal, R.P., O’Regan, D., Sahu, D.R.: Fixed Point Theory for Lipschitzian-Type Mappings with Applications. Springer, Dordrecht (2009)zbMATHGoogle Scholar
  2. 2.
    Buong, N., Duong, L.T.: An explicit iterative algorithm for a class of variational inequalities in Hilbert Spaces. J. Optim. Theory Appl. 151, 513–524 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ceng, L.-C., Ansari, Q.H., Yao, J.-C.: Mann-type steepest-descent and modified steepest-descent methods for variational inequalities in Banach spaces. Numer. Funct. Anal. Optim. 29, 987–1033 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cioranescu, I.: Geometry of Banach Spaces. Duality Mappings and Nonlinear Problems. Kluwer, Dordrecht (1990)CrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, R., Song, Y.: Convergence to common fixed point of nonexpansive semigroup. J. Comput. Appl. Math. 200, 566–575 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)CrossRefzbMATHGoogle Scholar
  7. 7.
    Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J.: Solution of Variational Inequalities in Mechanics. Springer, Berlin (1998)zbMATHGoogle Scholar
  8. 8.
    Iiduka, H.: Fixed point optimization algorithm and its application to power control in CDMA data networks. Math. Program. 133, 227–242 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Iiduka, H.: Fixed point optimization algorithm and its application to network bandwidth allocation. J. Comput. Appl. Math. 236, 1733–1742 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Iiduka, H.: Fixed point optimization algorithms for distributed optimization in network systems. SIAM J. Optim. 23, 1–26 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)zbMATHGoogle Scholar
  12. 12.
    Lions, J.L., Stampacchia, G.: Variational inequalities. Commun. Pure Appl. Math. 20, 493–519 (1967)CrossRefzbMATHGoogle Scholar
  13. 13.
    Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Applications—Convex and Nonconvex Energy Functions. Birkhäuser, Boston (1985)CrossRefzbMATHGoogle Scholar
  14. 14.
    Stampacchia, G.: Formes bilinéaires coercitives sur les ensembles convexes. C. R. Acad. Sci. Paris 258, 4413–4416 (1964)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Suzuki, T.: Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces. Fixed Point Theory Appl. 2005(1), 103–123 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Thuy, N.T.T., Hieu, P.T.: Implicit iteration methods for variational inequalities in Banach spaces. Bull. Malays. Math. Sci. Soc. 36, 917–926 (2013)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Wang, S.: Convergence and weaker control conditions for hybrid iterative algorithms. Fixed Point Theory Appl. (2011). doi: 10.1186/1687-1812-2011-3 MathSciNetzbMATHGoogle Scholar
  18. 18.
    Xu, H.-K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Yamada, I.: The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, Chapter 8, pp. 473–504. Elsevier Science Publishers, Amsterdam (2001)CrossRefGoogle Scholar
  20. 20.
    Yang, P., Yao, Y., Liou, Y.C., Chen, R.: Hybrid algorithms of nonexpansive semigroups for variational inequalities. J. Appl. Math. (2012). doi: 10.1155/2012/634927
  21. 21.
    Yao, Y., Noor, M.A., Liou, Y.C.: A new hybrid iterative algorithm for variational inequalities. Appl. Math. Comput. 216, 822–829 (2010)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Zeidler, E.: Nonlinear Functional Analysis and Its Applications. Springer, New York (1985)CrossRefzbMATHGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017

Authors and Affiliations

  1. 1.Faculty of Basic ScienceUniversity of Agriculture and Forestry, Thai Nguyen UniversityQuyet Thang Commune, Thai Nguyen CityVietnam
  2. 2.Department of Mathematics and InformaticsUniversity of Science, Thai Nguyen UniversityThai Nguyen CityVietnam
  3. 3.Department of MathematicsUniversity of NamurNamurBelgium

Personalised recommendations