Sharp Inequalities of Homogeneous Expansions of Almost Starlike Mappings of Order Alpha

  • Ming-Sheng LiuEmail author
  • Fen Wu


In this paper, we first obtain several sharp inequalities of homogeneous expansion for the subclass of all normalized almost starlike mappings of order \(\alpha \) defined on the unit ball B of a complex Banach space X. Then, with these sharp inequalities, we derive the sharp estimates of the third and fourth homogeneous expansions for the above mappings defined on the unit polydisk \(D^n\) in \(\mathbb {C}^n\).


Almost starlike mappings of order \(\alpha \) Inequalities of homogeneous expansions The sharp estimate of the third homogeneous expansions The sharp estimate of the fourth homogeneous expansions 

Mathematics Subject Classification

32A30 32H02 



The research was financially supported by Guangdong Natural Science Foundation (Grant Nos. 2014A030307016, 2014A030313422).


  1. 1.
    Cartan, H.: Sur la possibilit\(\acute{e}\) d’\(\acute{e}\)tendre aux fonctions de plusieurs variables complexes la theorie des fonctions univalents. In: Montel, P. (ed.) Lecons sur les Fonctions Univalents ou Mutivalents, pp. 129–155. Gauthier-Villar, Paris (1933)Google Scholar
  2. 2.
    Gong, S.: The Bieberbach Conjecture. American Mathematical Society, International Press, Providence, Somerville (1999)CrossRefzbMATHGoogle Scholar
  3. 3.
    Graham, I., Kohr, G.: Geometric Function Theory in One and Higher Dimensions. Marcel Dekker, New York (2003)zbMATHGoogle Scholar
  4. 4.
    Kohr, G.: On some best bounds for coefficients of several subclasses of biholomorphic mappings in \(\mathbb{C}^n\). Complex Var. 36, 261–284 (1998)zbMATHGoogle Scholar
  5. 5.
    Lin, Y.Y., Hong, Y.: Some properties of holomorphic maps in Banach spaces. Acta Math. Sin. 38(2), 234–241 (1995). (in Chinese)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Liu, M.S., Zhu, Y.C.: The radius of convexity and the sufficient condition for starlike mappings. Bull. Malays. Math. Sci. Soc. 35, 425–433 (2012)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Liu, T.S., Liu, X.S.: A refinement about estimation of expansion coefficients for normalized biholomorphic mappings. Sci. China 48, 865–879 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Liu, X.S.: On the quasi-convex mappings on the unit polydisk in \(\mathbb{C}^n\). J. Math. Anal. Appl. 335, 43–55 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Liu, X.S., Liu, T.S.: The sharp estimates of all homogeneous expansions for a class of quasi-convex mappings on the unit polydisk in \(\mathbb{C}^n\). Chin. Ann. Math. Ser. B 32, 241–252 (2012)CrossRefGoogle Scholar
  10. 10.
    Liu, X.S., Liu, T.S.: An inequality of homogeneous expansions for biholomorphic quasi-convex mappings on the unit polydisk and its application. Acta Math. Sci. 29(B)(1), 201–209 (2009)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Liu, X.S., Liu, M.S.: Quasi-convex mappings of order \(\alpha \) on the unit polydisk in \(\mathbb{C}^n\). Rocky Mt. J. Math. 40, 1619–1644 (2010)CrossRefzbMATHGoogle Scholar
  12. 12.
    Liu, X.S., Liu, T.S.: The sharp estimate of the third homogeneous expansions for a class of starlike mappings of order \(\alpha \) on the unit polydisk in \(\mathbb{C}^n\). Acta Math. Sci. 32B(2), 752–764 (2012)zbMATHGoogle Scholar
  13. 13.
    Liu, X.S., Liu, T.S., Xu, Q.H.: On sharp estimates of homogeneous expansions for starlike mappings of order \(\alpha \) in several complex variables. Taiwan. J. Math. 17(3), 801–813 (2013)CrossRefzbMATHGoogle Scholar
  14. 14.
    Xu, Q.H., Liu, T.S.: The estimation of expansion for a subclass of close-to-convex mappings. Sci. China Ser. A Math. 42(9), 927–938 (2012)Google Scholar
  15. 15.
    Xu, Q.H., Liu, T.S., Liu, X.S.: The sharp estimates of all homogeneous expansions for a class of close-to-convex mappings. Chin. Ann. Math. 33A(3), 297–310 (2012)zbMATHGoogle Scholar
  16. 16.
    Papadiamantis, M.K.: Polynomial estimates and radius of analyticity on real Banach spaces. arXiv:1210.7716vl [math.FA], 29 Oct 2012
  17. 17.
    Roper, K.A., Suffridge, T.J.: Convex mappings on the unit ball of \(\mathbb{C}^n\). J. Anal. Math. 65, 333–347 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Roper, K.A., Suffridge, T.J.: Convexity properties of holomorphic mappings in \(\mathbb{C}^{n}\), Trans. Am. Math. Soc. 351, 1803–1833 (1999)CrossRefzbMATHGoogle Scholar
  19. 19.
    Sarantopoulos, I.: Estimates for polynomial norms on \(L^p(\mu )\) spaces. Math. Proc. Camb. Philos. Soc. 99, 263–271 (1986)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017

Authors and Affiliations

  1. 1.School of Mathematical SciencesSouth China Normal UniversityGuangzhouPeople’s Republic of China

Personalised recommendations