Advertisement

On Free Quadratic Modules of Commutative Algebras

  • Alper Odabaş
  • Erdal UlualanEmail author
Article
  • 131 Downloads

Abstract

In this paper, we give a construction of (totally) free quadratic modules of commutative algebras on suitable construction data in terms of free simplicial algebras. Similar freeness results are also explored for reduced quadratic modules and quadratic (chain) complexes of algebras.

Keywords

Crossed modules Simplicial algebras Free quadratic modules Quadratic chain complex 

References

  1. 1.
    André, M.: Homologie des algèbres commutatives. Die Grundlehren der Mathematischen Wissenchaften, vol. 206. Springer-Verlag, Berlin (1970)Google Scholar
  2. 2.
    Artin, M., Mazur, B.: On the van Kampen theorem. Topology 5, 179–189 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arvasi, Z.: Crossed squares and 2-crossed modules of commutative algebras. Theory Appl. Categ. 3(7), 160–181 (1997)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Arvasi, Z., Porter, T.: Simplicial and crossed resolution of commutative algebras. J. Algebra 181, 426–448 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Arvasi, Z., Porter, T.: Higher dimensional Peiffer elements in simplicial commutative algebras. Theory Appl. Categ. 3(1), 1–23 (1997)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Arvasi, Z., Porter, T.: Freeness conditions for 2-crossed module of commutative algebras. Appli. Categ. Struct. 6, 455–477 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Arvasi, Z., Ulualan, E.: On algebraic models for homotopy 3-types. J. Homotopy Relat. Struct. 1(1), 1–27 (2006)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Arvasi, Z., Ulualan, E.: Quadratic and 2-crossed modules of algebras. Algebra Colloq. 14(4), 669–686 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Arvasi, Z., Ulualan, E.: Freeness conditions for quadratic modules and quadratic chain complexes. Georgian Math. J. 18, 615–637 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Arvasi, Z., Ulualan, E.: Homotopical aspects of commutative algebras I: freeness conditions for crossed squares, J. Homotopy Relat. Struct. (In print) Online first articles, (2014)Google Scholar
  11. 11.
    Baues, H.J.: Combinatorial homotopy and 4-dimensional complexes. Walter de Gruyter 15, 380 (1991)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Conduché, D.: Modules croisés généralisés de longueur 2. J. Pure Appl. Algebra 34, 155–178 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ellis, G.J.: Higher dimensional crossed modules of algebras. J. Pure Appl. Algebra 52, 277–282 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ellis, G.J.: Crossed squares and combinatorial homotopy. Math. Z. 214, 93–110 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Grandjeán, A.R., Vale, M.J.: 2-modulos cruzados an la cohomologia de André-Quillen, Memorias de la Reai Academia de Ciencias. 22, (1986)Google Scholar
  16. 16.
    Guin-Waléry, D., Loday, J-L.: Obsructioná l’excision en K-theories algébrique, In: Friedlander, E.M.,Stein, M.R. (eds.) Evanston conf. on algebraic K-Theory 1980, (Lect. Notes Math., vol. 854, pp. 179–216), Berlin Heidelberg New York: Springer (1981)Google Scholar
  17. 17.
    Illusie, L.: Complex cotangent et deformations I, II, Springer Lecture Notes in Math., 239 (1971) II 283 (1972)Google Scholar
  18. 18.
    Loday, J.-L.: Spaces with finitely many non-trivial homotopy groups. J. Pure Appl. Algebra 24, 179–202 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Morgenegg, C.: Sur les invariants d’un anneau local á corps résiduel de caractéristique 2, Ph. D. thesis, Lausanne EPFL (1979)Google Scholar
  20. 20.
    Muro, F.: Suspensions of crossed and quadratic complexes, Co-H-stuctures and applications. Trans. Am. Math. Soc. 357, 3623–3653 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Porter, T.: Homology of commutative algebras and an invariant of Simis and Vasconceles. J. Algebra 99, 458–465 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Whitehead, J.H.C.: Combinatorial homotopy II. Bull. Am. Math. Soc. 55, 453–496 (1949)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Universiti Sains Malaysia 2015

Authors and Affiliations

  1. 1.Department of Mathematics and Computer Science, Science and Art FacultyEskişehir Osmangazi UniversityEskişehirTurkey
  2. 2.Mathematics Department, Science and Art FacultyDumlupınar UniversityKütahyaTurkey

Personalised recommendations