Advertisement

Crossed Products of Pro-\(C^{*}\)-Algebras and Hilbert Pro-\(C^{*}\)-Modules

  • Maria JoiţaEmail author
Article

Abstract

In this paper, we prove a universal property for the crossed product of a pro-\(C^{*}\)-algebra by an inverse limit action of a locally compact group. Also, we prove a universal property of the crossed product of a Hilbert (pro-) \(C^{*}\)-module by an (inverse limit) action of a locally compact group.

Keywords

Pro-\(C^{*}\)-algebras Hilbert pro-\(C^{*}\)-modules Crossed product 

Mathematics Subject Classification

Primary 46L05 46L08 

References

  1. 1.
    Arambašić, Lj.: Irreducible representations of Hilbert \(C^{\ast }\)-modules. Math. Proc. R. Ir. Acad. 105A(1), 11–24 (2005)Google Scholar
  2. 2.
    Fragoulopoulou, M.: Topological Algebras with Involution. North Holland, Amsterdam (2005)zbMATHGoogle Scholar
  3. 3.
    Joiţa, M.: Crossed Products of Locally \(C^{\ast }\)-Algebras, pp. 115+Xii, Editura Academiei Române, Bucharest (2007). ISBN 978-973-27-1600-7Google Scholar
  4. 4.
    Joiţa, M.: Hilbert Modules Over Locally \(C^{\ast } \)-Algebras. University of Bucharest Press, Bucharest (2006)Google Scholar
  5. 5.
    Joiţa, M.: Crossed products of pro-\(C^{\ast }\)-algebras and strong Morita equivalence. Mediterr. J. Math. 5(4), 467–492 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Joiţa, M.: On Lebesgue type decomposition for covariant completely positive maps on \(C^{\ast }\)-algebras. Banach J. Math. Anal. 4(2), 75–85 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Joiţa, M.: Covariant representations of Hilbert \(C^{\ast }\)-modules. Expo. Math. 30, 209–220 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Kusuda, M.: Duality for crossed products of Hilbert \(C^{\ast }\)-modules. J. Oper. Theory 60(1), 85–112 (2008)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Mallios, A.: Topological Algebras: Selected Topics. North Holland, Amsterdam (1986)zbMATHGoogle Scholar
  10. 10.
    Phillips, N.C.: Inverse limits of \(C^{\ast }\)-algebras. J. Oper. Theory 19, 159–195 (1988)zbMATHGoogle Scholar
  11. 11.
    Phillips, N.C.: Representable K-theory for \(\sigma - C^{\ast }\)-algebras. K-Theory 3(5), 441–478 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Raeburn, I.: On crossed products and Takai duality. Proc. Edinb. Math. Soc. 31, 321–330 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Raeburn, I., Thompson, S.J.: Countably generated Hilbert modules, the Kasparov stabilisation theorem, and frames with Hilbert modules. Proc. Amer. Math. Soc. 131(5), 1557–1564 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Sharifi, K.: Generic properties of module maps and characterizing inverse limits of \(C^{\ast }\)-algebras of compact operators. Bull. Malays. Math. Sci. Soc. 36(2), 481–489 (2013)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Williams, D.P.: Crossed Products of \(C^{\ast }\)-Algebras, Mathematical Surveys and Monographs, vol. 134. American Mathematical Society, Providence (2007)Google Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Universiti Sains Malaysia 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BucharestBucharestRomania
  2. 2.Department of MathematicsFaculty of Applied Sciences, University Politehnica of BucharestBucharestRomania

Personalised recommendations