Crossed Products of Pro-\(C^{*}\)-Algebras and Hilbert Pro-\(C^{*}\)-Modules
Article
First Online:
- 46 Downloads
- 1 Citations
Abstract
In this paper, we prove a universal property for the crossed product of a pro-\(C^{*}\)-algebra by an inverse limit action of a locally compact group. Also, we prove a universal property of the crossed product of a Hilbert (pro-) \(C^{*}\)-module by an (inverse limit) action of a locally compact group.
Keywords
Pro-\(C^{*}\)-algebras Hilbert pro-\(C^{*}\)-modules Crossed productMathematics Subject Classification
Primary 46L05 46L08References
- 1.Arambašić, Lj.: Irreducible representations of Hilbert \(C^{\ast }\)-modules. Math. Proc. R. Ir. Acad. 105A(1), 11–24 (2005)Google Scholar
- 2.Fragoulopoulou, M.: Topological Algebras with Involution. North Holland, Amsterdam (2005)zbMATHGoogle Scholar
- 3.Joiţa, M.: Crossed Products of Locally \(C^{\ast }\)-Algebras, pp. 115+Xii, Editura Academiei Române, Bucharest (2007). ISBN 978-973-27-1600-7Google Scholar
- 4.Joiţa, M.: Hilbert Modules Over Locally \(C^{\ast } \)-Algebras. University of Bucharest Press, Bucharest (2006)Google Scholar
- 5.Joiţa, M.: Crossed products of pro-\(C^{\ast }\)-algebras and strong Morita equivalence. Mediterr. J. Math. 5(4), 467–492 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
- 6.Joiţa, M.: On Lebesgue type decomposition for covariant completely positive maps on \(C^{\ast }\)-algebras. Banach J. Math. Anal. 4(2), 75–85 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
- 7.Joiţa, M.: Covariant representations of Hilbert \(C^{\ast }\)-modules. Expo. Math. 30, 209–220 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
- 8.Kusuda, M.: Duality for crossed products of Hilbert \(C^{\ast }\)-modules. J. Oper. Theory 60(1), 85–112 (2008)zbMATHMathSciNetGoogle Scholar
- 9.Mallios, A.: Topological Algebras: Selected Topics. North Holland, Amsterdam (1986)zbMATHGoogle Scholar
- 10.Phillips, N.C.: Inverse limits of \(C^{\ast }\)-algebras. J. Oper. Theory 19, 159–195 (1988)zbMATHGoogle Scholar
- 11.Phillips, N.C.: Representable K-theory for \(\sigma - C^{\ast }\)-algebras. K-Theory 3(5), 441–478 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
- 12.Raeburn, I.: On crossed products and Takai duality. Proc. Edinb. Math. Soc. 31, 321–330 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
- 13.Raeburn, I., Thompson, S.J.: Countably generated Hilbert modules, the Kasparov stabilisation theorem, and frames with Hilbert modules. Proc. Amer. Math. Soc. 131(5), 1557–1564 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
- 14.Sharifi, K.: Generic properties of module maps and characterizing inverse limits of \(C^{\ast }\)-algebras of compact operators. Bull. Malays. Math. Sci. Soc. 36(2), 481–489 (2013)zbMATHMathSciNetGoogle Scholar
- 15.Williams, D.P.: Crossed Products of \(C^{\ast }\)-Algebras, Mathematical Surveys and Monographs, vol. 134. American Mathematical Society, Providence (2007)Google Scholar
Copyright information
© Malaysian Mathematical Sciences Society and Universiti Sains Malaysia 2014