Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Investigation on Stabilization of Ladle Furnace Slag with Different Additives

  • 41 Accesses


Ladle furnace slag disintegrates into fine powder during cooling due to phase transformations of di-calcium silicate. This creates an adverse impact on working conditions and the environment by dust generation. In this paper, a short overview on different studies to overcome the disintegration problem is provided. An attempt was also made to study the effects of several different additives and their mixtures on disintegration of slag. Phase equilibria calculations were carried out for some additives using FactSage® to understand the phase changes in the slag. Based on the phase equilibria calculations and literature data, initial laboratory experiments were conducted at 1650 °C with different additives such as boric acid, aluminium, and fly ash. Slag samples were analyzed with X-ray fluorescence and X-ray powder diffraction for chemical and phase analysis before and after treatment. The disintegration of slag can be prevented either by addition of 0.5 wt% or more of boric acid or 9 wt% of aluminium or 6 wt% of fly ash or 4–8 wt% fly ash along with 0.125–0.25 wt% of boric acid in slag. Based on the optimized conditions, industrial trials were conducted.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    Branca TA, Colla V, Valentini R (2009) A way to reduce environmental impact of ladle furnace slag. Ironmak Steelmak 36:597–602. https://doi.org/10.1179/030192309X12492910937970

  2. 2.

    Groves GW (1983) Phase transformations in dicalcium silicate. J Mater Sci 18:1615–1624. https://doi.org/10.1007/bf00542054

  3. 3.

    Durinck D, Arnout S, Mertens G, Boydens E, Jones PT, Elsen J, Blanpain B, Wollants P (2008) Borate distribution in stabilized stainless-steel slag. J Am Ceram Soc 91:548–554. https://doi.org/10.1111/j.1551-2916.2007.02147.x

  4. 4.

    Sheshukov OY, Mikheenkov MA, Egiazaryan DK, Ovchinnikova LA, Lobanov DA (2017) Chemical stabilization features of ladle furnace slag in ferrous metallurgy. KnE Mater Sci 2:59–64. 10.18502/kms.v2i2.947.

  5. 5.

    Kim YJ, Nettleship I, Kriven WM (1992) Phase transformations in dicalcium silicate: II, TEM studies of crystallography, microstructure, and mechanisms. J Am Ceram Soc 75:2407–2419. https://doi.org/10.1111/j.1151-2916.1992.tb05593.x

  6. 6.

    Parker TW, Ryder WM (1942) Investigations on ‘falling’ blast furnace slag. J Iron Steel Inst 146:21–51

  7. 7.

    Pontikes Y, Jones PT, Geysen D, Blanpain B (2010) Options to prevent dicalcium silicate-driven disintegration of stainless steel slags. Arch Metall Mater 55:1167–1172. https://doi.org/10.2478/v10172-010-0020-6

  8. 8.

    Durinck D, Engstrom F, Arnout S, JeroenHeulens PT, Jones BB, Blanpain B, Wollants P (2008) Hot stage processing of metallurgical slags. Resour Conserv Recycl 52:1121–1131. https://doi.org/10.1016/j.resconrec.2008.07.001

  9. 9.

    Cuesta A, Losilla ER, Aranda MA, Sanz J, Ángeles G (2012) Reactive belite stabilization mechanisms by boron-bearing dopants. Cem Concr Res 42:598–606. https://doi.org/10.1016/j.cemconres.2012.01.006

  10. 10.

    Benarchid MY, Diouri A, Boukhari A, Aride J, Rogez J, Castanet R (2004) Elaboration and thermal study of iron–phosphorus-substituted dicalcium silicate phase. Cem Concr Res 34:1873–1879. https://doi.org/10.1016/j.cemconres.2004.01.030

  11. 11.

    Kim YM, Hong SH (2004) Influence of minor ions on the stability and hydration rates of β-dicalcium silicate. J Am Ceram Soc 87:900–905. https://doi.org/10.1111/j.1551-2916.2004.00900.x

  12. 12.

    Maiti SC, Ghoroi C (2017) Influence of catalytic nano-additive for stabilization of β-dicalcium silicate and its hydration rate with different electrolytes. Cem Concr Res 98:111–121. https://doi.org/10.1016/j.cemconres.2017.04.008

  13. 13.

    Ghosh SN, Bhaskara Rao P, Paul AK, Raina K (1979) The chemistry of dicalcium silicate mineral. J Mater Sci 14:1554–1566. https://doi.org/10.1007/BF00551828

  14. 14.

    Heuer AH, Claussen N, Kriven WM, Ruhle M (1982) Stability of tetragonal ZrO2 particles in ceramic matrices. J Am Ceram Soc 65:642–650. https://doi.org/10.1111/j.1151-2916.1982.tb09946.x

  15. 15.

    Seki A, Aso Y, Okubo M, Sudo F, Ishizaka K (1986) Development of dusting prevention stabilizer for stainless steel slag. Kawasaki Steel Tech Rep 15:16–21

  16. 16.

    Smith DK, Majumdar A, Ordway F (1965) The crystal structure of γ-dicalcium silicate. Acta Crystallogr 18:787–795. https://doi.org/10.1107/S0365110X65001780

  17. 17.

    SofienSaidani AS, El Hafiane Y, Tahar LB (2018) Re-examination of the β→γ transformation of Ca2SiO4. J Eur Ceram Soc 38:4756–4767. https://doi.org/10.1016/j.jeurceramsoc.2018.06.011

  18. 18.

    Sheshukov OY, Nerkasov IV, Mikheenkov MA, Egiazaryan DK, Sivtsov AV, Chencov VP, Gertsberg GE (2017) Unit ladle-furnace: slag forming conditions and stabilization. KnE Mater Sci 2:70–75. 10.18502/kms.v2i2.949.

  19. 19.

    Epstein H, Iacobescu RI, Pontikes Y, Malfliet A, Machiels L, Jones PT, Blanpain B (2013) Stabilization of CaO-SiO2-MgO (CSM) slags by recycled alumina. In: 7th European slag conference, IJmuiden, Netherlands, pp 110–120

  20. 20.

    Yang Q, Nedar L, Engstrom F, He M (2006) Treatments of AOD slag to produce aggregates for road construction. In: AISTech 2006 proceedings of the iron and steel technology conference and exposition, Warrendale, USA, pp 573–583

  21. 21.

    Fletcher JG, Glasser FP (1993) Phase relations in the system CaO-B2O3-SiO2. J Mater Sci 28:2677–2686. https://doi.org/10.1007/BF00356203

  22. 22.

    Yang Q, Engstrom F, Tossavainen M, He M (2005) AOD slag treatments to recover metal and to prevent slag dusting. In: 7th Nordic-Japan symposium on science and technology of process metallurgy

  23. 23.

    Kriskova L, Pontikes Υ, Pandelaers L, Cizer O, Jones PT, Van Balen K, Blanpain B (2013) Effect of high cooling rates on the mineralogy and hydraulic properties of stainless steel slags. Metall Mater Trans B 5:1173–1184. https://doi.org/10.1007/s11663-013-9894-9

  24. 24.

    Sakamoto N (2001) Effects of MgO based glass addition on the dusting of stainless steel slag (development of control process of stainless steel slag dusting-3). Curr Adv Mater Processes 14:939

  25. 25.

    Pontikes Y, Kriskova L, Wang X, Geysen D, Arnout S, Nagels E, Cizer O, Van T, Gerven Elsen J, Guo M, Jones PT, Blanpain B (2011) Additions of industrial residues for hot stage engineering of stainless steel slags. In: Proceedings of 2nd international slag valorisation symposium, Leuven, Belgium, p 314

  26. 26.

    Kitamura S, Maruoka N (2009) Modification of stainless steel slag by mixing the nonferrous slag. In: Proceedings of 1st international slag valorisation symposium, Leuven, Belgium, pp 93–100

  27. 27.

    Iacobescu RI, Malfliet A, Machiels L, Jones PT, Blanpain B, Pontikes Y (2014) Stabilisation and microstructural modification of stainless steel converter slag by addition of an alumina rich by-product. Waste Biomass Valoriz 5:343–353. https://doi.org/10.1007/s12649-013-9287-y

  28. 28.

    Cuesta A, Aranda MA, Sanz J, de la Torre AG, Losilla ER (2014) Mechanism of stabilization of dicalcium silicate solid solution with aluminium. Dalton Trans 43:2176–2182. https://doi.org/10.1039/C3DT52194J

  29. 29.

    Mudersbach D, Kuehn M, Geiseler J, Koch K (2009) Chrome immobilisation in EAF-slags from high-alloy steelmaking: tests at FEhS institute and development of an operational slag treatment process. In: 1st International slag valorisation symposium, Leuven, Belgium, pp 101–110

  30. 30.

    Chan CJ, Kriven WM, Young JF (1992) Physical stabilization of the β→γ transformation in dicalcium silicate. J Am Ceram Soc 75:1621–1627. https://doi.org/10.1111/j.1151-2916.1992.tb04234.x

  31. 31.

    Engstrom F, Pontikes Y, Geysen D, Jones PT, Bjorkman B, Blanpain B (2011) Hot stage engineering to improve slag valorisation options. In: 2nd international slag valorisation symposium, Leuven, Belgium, pp 231–250

  32. 32.

    Zhao H, Qi Y, Shi Y, Na X, Feng H (2013) Mechanism and prevention of disintegration of AOD stainless steel slag. J Iron Steel Res Int 20:26–30. https://doi.org/10.1016/S1006-706X(13)60078-3

  33. 33.

    Eriksson J, Bjorkman B (2004) MgO modification of slag from stainless steel making. In: VII International conference on molten slags fluxes and salts, Cape Town, South Africa, pp 455–459

  34. 34.

    Ghorai S, Mandal GK, Roy S, Minj RK, Agrawal A, Singh DP, Kumar A, Ramna RBV (2017) Treatment of LF slag to prevent powdering during cooling. J Min Metall Sect B 53:123–130. https://doi.org/10.2298/JMMB160316003S

  35. 35.

    Huang S, Guo M, Jones PT, Blanpain B (2013) Fayalite slag modified stainless steel AOD slag. In: 3rd International slag valorisation symposium, Leuven, Belgium, pp 107–110

  36. 36.

    Setién J, Hernández D, González JJ (2009) Characterization of ladle furnace basic slag for use as a construction material. Constr Build Mater 23:1788–1794. https://doi.org/10.1016/j.conbuildmat.2008.10.003

  37. 37.

    Manso JM, Losañez M, Polanco JA, Gonzalez JJ (2005) Ladle furnace slag in construction. J Mater Civ Eng 17:513–518. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:5(513)

  38. 38.

    Vilaplana ASDG, Ferreira VJ, López-Sabirón AM, Aranda-Usón A, Lausín-González C, Berganza-Conde C, Ferreira G (2015) Utilization of ladle furnace slag from a steelwork for laboratory scale production of Portland cement. Constr Build Mater 94:837–843. https://doi.org/10.1016/j.conbuildmat.2015.07.075

  39. 39.

    Maghool F, Arulrajah A, Horpibulsuk S, Du YJ (2016) Laboratory evaluation of ladle furnace slag in unbound pavement-base/subbase applications. J Mater Civ Eng 29:04016197–4016199. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001724

  40. 40.

    Manso JM, Ortega-López V, Polanco JA, Setién J (2013) The use of ladle furnace slag in soil stabilization. Constr Build Mater 40:126–134. https://doi.org/10.1016/j.conbuildmat.2012.09.079

  41. 41.

    Bocci E (2018) Use of ladle furnace slag as filler in hot asphalt mixtures. Constr Build Mater 161:156–164. https://doi.org/10.1016/j.conbuildmat.2017.11.120

  42. 42.

    Rađenović A, Malina J, Sofilić T (2013) Characterization of ladle furnace slag from carbon steel production as a potential adsorbent. Adv Mater Sci Eng 10000:10000. https://doi.org/10.1155/2013/198240

Download references

Author information

Correspondence to M. B. Venkata Rao.

Ethics declarations

Conflict of interest

On behalf of all authors there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The contributing editor for this article was I. Sohn.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gollapalli, V., Tadivaka, S.R., Borra, C.R. et al. Investigation on Stabilization of Ladle Furnace Slag with Different Additives. J. Sustain. Metall. (2020). https://doi.org/10.1007/s40831-020-00263-w

Download citation


  • Ladle furnace slag
  • Di-calcium silicate
  • Disintegration
  • Modification
  • Stabilization
  • Environmental impact