Advertisement

Separation Between Silicon and Aluminum Powders Contained Within Pulverized Scraped Silicon-Based Waste Solar Cells by Flotation Method

  • Sho Harada
  • Md. Azhar Uddin
  • Yoshiei KatoEmail author
  • Takanori Kawanishi
  • Yoshiaki Hayashi
Research Article
  • 21 Downloads

Abstract

There are few study examples on the separation of metals by floating method. In this study, separation of silicon and aluminum, which are the main components of silicon-based solar cell module, was carried out by floating method in order to purify silicon from waste solar cell module. The selection of surfactant, control of electric charge, wettability of the solid particles, surface tensions, and bubble surface area are important for separation of solids by floating method. Sodium dodecyl sulfate (SDS) can increase the hydrophobicity of aluminum powder due to the difference of surface potentials between silicon and aluminum. SDS behaves as a collector of aluminum as well as a frothing agent to decrease the bubble size. At a SDS concentration of 2 g/L and sample dipping time of 10 min, 80.1 mass% of aluminum was floated and separated, and the sedimentary silicon reached a purity of 90.7% from a mixture of 50 mass% aluminum and 50 mass% silicon. Finally, at a pH value of 7.0, SDS concentration between 1.0 and 2.5 g/L and air flow rate of 2.5 L/min (STP) were suitable experimental conditions to purify silicon from a mixture of silicon and aluminum by flotation separation method.

Keywords

Flotation Floating separation Waste solar cell module Silicon Sodium dodecyl sulfate 

Notes

Acknowledgements

This study was carried out under the project of NEDO (New Energy and Industrial Technology Development Organization), entitled “Development project for photovoltaic (PV) recycling technology”.

References

  1. 1.
    IEA International Energy Agency (2018) Snaphot of global photovoltaic, In: Report IEA PVPS T1-33:2018Google Scholar
  2. 2.
    Louwen A, van Sark WGJHM, Faaij APC, Schropp RE, Ruud I (2016) Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development. Nat Commun 13728(7):1–9Google Scholar
  3. 3.
    Ministry of the Environment Government of Japan (2016) http://www.env.go.jp/press/files/jp/102441.pdf. Accessed 28 Jan 2019
  4. 4.
    Dias P, Schmidt L, Gomes LB, Bettanin A, Veit H, Bernardes AM (2018) Recycling waste crystalline silicon photovoltaic modules by electrostatic separation. J Sustain Metall 4(2):176–186CrossRefGoogle Scholar
  5. 5.
    Park J, Kim W, Cho N, Lee H, Pak N (2016) An eco-friendly method for reclaimed silicon wafers from a photovoltaic module: from separation to cell fabrication. Green Chem 18:1706–1714CrossRefGoogle Scholar
  6. 6.
    Tsoutsos T, Frantzeskaki N, Gekass V (2005) Environmental impacts from the solar energy technologies. Energy Policy 33(3):289–296CrossRefGoogle Scholar
  7. 7.
    Matsubara T, Uddin MA, Kato Y, Kawanishi T, Hayashi Y (2018) Chemical treatment of copper and aluminum derived from waste crystalline silicon solar cell modules by mixed acids of HNO3 and HCl. J Sustain Metall 4(3):378–387CrossRefGoogle Scholar
  8. 8.
    Union European (2012) Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE). Off J Eur Union 197:38–71Google Scholar
  9. 9.
    Doi T, Tsuda I, Unagida H, Murata A, Sakuta K, Kurokawa K (2001) Experimental study on PV module recycling with organic solvent. Solar Energy Mater Solar Cells 67(1):397–403CrossRefGoogle Scholar
  10. 10.
    Jung B, Park J, Seo D, Park N (2016) Sustainable system for raw-metal recovery from crystalline silicon solar panels: from noble-metal extraction to lead removal. Sust Chem Eng 4(8):4079–4083CrossRefGoogle Scholar
  11. 11.
    Radziemska EK, Ostrowski P (2010) Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules. Renew Energy 35(8):1751–1759CrossRefGoogle Scholar
  12. 12.
    Kang S, Yoo S, Lee J, Bonghyun B, Ryu H (2012) Experimental investigations for recycling of silicon and glass from waste photovoltaic modules. Renew Energy 47:152–159CrossRefGoogle Scholar
  13. 13.
    Yi YK, Kim HS, Tran T, Hong SK, Kim MJ (2014) Recovering valuable metals from recycled photovoltaic modules caption list. J Air Waste Manag Assoc 64(7):797–807CrossRefGoogle Scholar
  14. 14.
    Huang WH, Shin WJ, Wang L, Sun WC, Tao M (2017) Strategy and technology to recycle wafer-silicon solar modules. Sol Energy 144(1):22–31CrossRefGoogle Scholar
  15. 15.
    Acker J, Henbge A (2007) Chemical analysis of acidic silicon etch solutions II. Determination of HNO3, HF and H2SiF6 by ion chromatography. Talanta 72:1540–1545CrossRefGoogle Scholar
  16. 16.
    New Energy and Industrial Technology Development (NEDO) (2015) https://www.nedo.go.jp/content/100758482.pdf. Accessed 28 Jan 2019
  17. 17.
    Mukai S (1959) On floatation method [Fuyusenkoho ni tuite]. J Chem Eng Jpn 23(7):480–486Google Scholar
  18. 18.
    Wada M (1943) Investigations into the network effect of loose foams in liquid solutions on paraffin. Contributions to floating foam processes [Untersuchungen uber die netzwirkung der schaumer in wasserigen losungen auf parain. Beitrage zum schaumschwimmverfahren]. (Mitteihung 1-2). J Min Inst Jpn 59(704):681–698Google Scholar
  19. 19.
    Isomatsu R (1961) On removal of iron sulfide from pottery stone by flotation method [Fusenho niyoru toseki no ryukatetsu zyokyo ni tsuite]. J Chem Eng Jpn 25(7):547–553Google Scholar
  20. 20.
    Numata Y, Yokoyama Y, Wakamatsu T (1979) Fundamental studies on the behavior of a-terpineol and cineol as a frother in sulfide mineral flotation. J Min Metall Inst Jpn 95(1098):461–465Google Scholar
  21. 21.
    Chen Z, Nishimura S, Sasaki H, Usui S (1990) Cationic flotation of fine quartz using dodecyltrimethylammonium bromide (DTAB). Shigen-to-Sozai 106(9):521–525CrossRefGoogle Scholar
  22. 22.
    Wang J, Wang H, Wang C, Zhang L, Wang T, Zheng L (2017) A novel process for separation of hazardous poly (vinyl chloride) from mixed plastic wastes by froth flotation. Waste Manag 69:59–65CrossRefGoogle Scholar
  23. 23.
    Wang C, Wang H, Fu J, Zhang L, Luo C, Liu Y (2015) Flotation separation of polyvinyl chloride and polyethylene terephthalate plastics combined with surface modification for recycling. Waste Manag 45:112–117CrossRefGoogle Scholar
  24. 24.
    Marques GA, Tenorio AS (2000) Use of froth flotation to separate PVC/PET mixtures. Waste Manag 20(4):265–269CrossRefGoogle Scholar
  25. 25.
    Truc NTT, Lee BK (2016) Sustainable and selective separation of PVC and ABS from a WEEE plastic mixture using microwave and/or mild-heat treatment with froth flotation. Environ Sci Technol 50(19):10580–10587CrossRefGoogle Scholar
  26. 26.
    Eivazihollagh A, Tejera J, Svanedal I, Edlund H, Blanco A, Norgren M (2017) Removal of Cd2+, Zn2+, and Sr2+ by ion flotation, using a surface-active derivative of DTPA (C12-DTPA). Ind Eng Chem Res 56(38):10605–10614CrossRefGoogle Scholar
  27. 27.
    Dey S, Paul GM, Pani S (2013) Flotation behaviour of weathered coal in mechanical and column flotation cell. Powder Technol 246:689–694CrossRefGoogle Scholar
  28. 28.
    Yamasaki T (1969) Application of surfactants for flotation. J Jpn Oil Chem Soc 18(7):417–426CrossRefGoogle Scholar
  29. 29.
    Esumi K (1997) Characteristics and application of surfactant adsorbed layers formed on particles. J JSCM 70(10):675–685Google Scholar
  30. 30.
    Umeda H, Sasaki A, Takahashi K, Haga K, Takasaki Y, Kuzuno E, Shibayama A (2011) Flotation and process design for precious metals recovery from powdery waste generated by polishing process of dental alloy. J MMIJ 127(10_11):649–655CrossRefGoogle Scholar
  31. 31.
    Nakazawa H, Sato T, Oikawa K, Kagesawa K (1993) Recovery of precious metals from dental material waste by flotation. Shigen-to-Sozai 109(11):879–884CrossRefGoogle Scholar
  32. 32.
    Ito R, Dodbiba G, Sadaki A, Ahn JW, Fujita T (2007) Recovery of heavy metals by flotation from incinerated automobile shredder residues. Resour Process 54(3):152–157CrossRefGoogle Scholar
  33. 33.
    Matsuoka I (1982) Flotation of oxide minerals. J Min Metall Inst Jpn 98(1134):664–670Google Scholar
  34. 34.
    Somasundaran P, Fuerstenau DW (1966) Mechanisms of alkyl sulfonate adsorption at the alumina-water interface. J Phys Chem 70(1):90–96CrossRefGoogle Scholar
  35. 35.
    Aixing F, Somasundaran P, Turro NJ (1997) Adsorption of alkyltrimenthylammonium bromides on negatively charged alumina. Langmuir 13(3):506–510CrossRefGoogle Scholar
  36. 36.
    Koopal LK, Lee EM, Bohmer MR (1995) Adsorption of cationic and anionic surfactants on charged metal oxide surfaces. J Colloid Interface Sci 170(1):85–97CrossRefGoogle Scholar
  37. 37.
    Thermo Scientific™. Sodium Dodecyl Sulfate (SDS), Lauryl. https://www.thermofisher.com/order/catalog/product/28364. Accessed 28 Jan 2019
  38. 38.
    Kato Y, Hanazawa K, Baba H, Nakamura N, Yuge N, Sakaguchi Y, Hiwasa S, Aratani F (2000) Purification of metallurgical grade silicon to solar grade for use in solar cell wafers. Tetsu-to-Hagane 86(11):717–724CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Material and Energy Science, Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
  2. 2.Wet Process DivisionToho Kasei Co., LtdFuchuJapan

Personalised recommendations