Advertisement

Chlorine Addition to Existing Zinc Fuming Processes: A Thermodynamic Study

  • Sabrina Van WinkelEmail author
  • Lennart Scheunis
  • Frederik Verhaeghe
  • Bart Blanpain
  • Annelies Malfliet
Research Article
  • 30 Downloads

Abstract

Zinc fuming processes are used to volatilize heavy metals from slags and produce a clean slag. Since alternative fuel sources containing plastics are explored, the effect of chlorides becomes relevant. In this paper, the influence of Cl additions to a zinc fuming process on the Zn volatilization is investigated. Thermodynamic calculations were carried out on available industrial data from three different installations. The effects on the fuming performance of the α-value (mol O2/ mol C, in a range of 0.5 to 0.75), chloride source (Cl2, KCl, NaCl, MgCl2, and CaCl2), and added chloride amounts (50, 150, and 500 ppm Cl/min) were investigated. Although the α-value is still the most influential parameter for the overall zinc fuming rate, chloride additions can have positive effects as well. They make ZnCl2 volatilization possible, which supplements the Zn volatilization. Large additions of CaCl2 and MgCl2 improve the fuming rate the most since they cause the largest formation of the volatile ZnCl2 and they do not negatively influence Zn volatilization.

Keywords

Thermodynamics Chlorine Zinc fuming Pyrometallurgy 

Notes

Acknowledgements

The authors would like to thank the Vlaams Agentschap Innoveren & Ondernemen (VLAIO) and Umicore for the the financial support (Project 140767).

Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

References

  1. 1.
    Butcher AJ (1968) The recovery of zinc from lead blast furnace slag at port pirie. Mech Chem Eng Trans 2:187–191Google Scholar
  2. 2.
    Heale K, Bot O, Klimchuk K, Rioux D (2010) Value-added slag fuming at Teck Trail Operations. In: Lead-Zinc 2010. Wiley, Hoboken, NJ, pp 1087–1100Google Scholar
  3. 3.
    Grant RM (1980) The derivation of thermodynamic properties of slags from slag fuming plant data. Paper presented at the Australia Japan extractive metallurgy symposium, Sydney, 16–18/07/1980.Google Scholar
  4. 4.
    Hansson RH, Lehner T (2010) Recovery of recycled zinc by slag fuming at the Rönnskär Smelter. In: Lead-Zinc 2010. Wiley, Hoboken, NJ, pp 1235–1244Google Scholar
  5. 5.
    Pickles CA (2009) Thermodynamic analysis of the selective chlorination of electric arc furnace dust. J Hazard Mater 166:1030–1042.  https://doi.org/10.1016/j.jhazmat.2008.11.110 CrossRefGoogle Scholar
  6. 6.
    Choi CY, Lee YH (1999) Treatment of zinc residues by Ausmelt Technology at Onsan zinc refinery. Rewas'99 global symposium on recycling, Waste Treatment and Clean Technology, vol i–iii.Google Scholar
  7. 7.
    Hoang J, Reuter MA, Matusewicz R, Hughes S, Piret N (2009) Top submerged lance direct zinc smelting. Miner Eng 22:742–751.  https://doi.org/10.1016/j.mineng.2008.12.014 CrossRefGoogle Scholar
  8. 8.
    Hughes SR, Baxter MA, Kaye R, Ausmelt A (2008) Technology for lead and zinc processing Lead and Zinc 2008 The Southern African Institute of Mining and Metallurgy Johannesburg, pp 147–160.Google Scholar
  9. 9.
    Abdel-latif MA (2002) Fundamentals of zinc recovery from metallurgical wastes in the Enviroplas process. Miner Eng 15:945–952.  https://doi.org/10.1016/s0892-6875(02)00133-4 CrossRefGoogle Scholar
  10. 10.
    Hara Y, Ishiwata N, Itaya H, Matsumoto T (2000) Smelting reduction process with a coke packed bed for steelmaking dust recycling. ISIJ Int 40:231–237.  https://doi.org/10.2355/isijinternational.40.231 CrossRefGoogle Scholar
  11. 11.
    Verscheure K, Van Camp M, Blanpain B, Wollants P, Hayes P, Jak E (2007) Continuous fuming of zinc-bearing residues: part I Model development. Metall Trans B 38:13–20.  https://doi.org/10.1007/s11663-006-9009-y CrossRefGoogle Scholar
  12. 12.
    Verscheure K, Van Camp M, Blanpain B, Wollants P, Hayes P, Jak E (2007) Continuous fuming of zinc-bearing residues: part II. The submerged-plasma zinc-fuming process. Metall Trans B 38:21–33.  https://doi.org/10.1007/s11663-006-9010-5 CrossRefGoogle Scholar
  13. 13.
    Bell RC, Turner GH, Peters E (1955) Fuming of zinc from lead blast furnace slag. Trans Am Inst Min Metall Eng 203:472–477Google Scholar
  14. 14.
    Kellogg HH (1967) A computer model of slag-fuming process for recovery of zinc oxide. Trans Metall Soc AIME 239:1439–2000Google Scholar
  15. 15.
    Quarm TAA (1965) The slag fuming process. Min Mag 113(2):114–123Google Scholar
  16. 16.
    Richards GG (1994) Optimization of the zinc slag fuming process. EPD Congr 1994.Google Scholar
  17. 17.
    Richards GG (1996) Continuous fuming of zinc-containing slags. Howard Worner International symposium on injection in pyrometallurgy.Google Scholar
  18. 18.
    Richards GG, Brimacombe JK (1985) Kinetics of the zinc slag-fuming process. 2. Mathematical-model. Metall Trans B 16:529–540.  https://doi.org/10.1007/bf02654851 CrossRefGoogle Scholar
  19. 19.
    Richards GG, Brimacombe JK (1985) Kinetics of the zinc slag-fuming process. 3. Model predictions and analysis of process kinetic S. Metall Trans B 16:541–549.  https://doi.org/10.1007/bf02654852 CrossRefGoogle Scholar
  20. 20.
    Richards GG, Brimacombe JK, Toop GW (1985) Kinetics of the zinc slag-fuming process.1. Industrial measurements. Metall Trans B 16:513–527.  https://doi.org/10.1007/bf02654850 CrossRefGoogle Scholar
  21. 21.
    Cockcroft SL, Richards GG, Brimacombe JK (1988) Mathematical-model of lead behavior in the zinc slag fuming process. Can Metall Q 27:27–40CrossRefGoogle Scholar
  22. 22.
    Cockcroft SL, Richards GG, Brimacombe JK (1989) High-pressure coal injection in zinc slag fuming. Metall Trans B 20:227–235.  https://doi.org/10.1007/bf02825603 CrossRefGoogle Scholar
  23. 23.
    Jak E, Hayes P (2002) Phase equilibria and thermodynamics of zinc fuming slags. Can Metall Q 41:163–174CrossRefGoogle Scholar
  24. 24.
    Lotfian S, Ahmed H, El-Geassy A-HA, Samuelsson C (2017) Alternative reducing agents in metallurgical processes: gasification of shredder residue material. J Sustain Metall 3:336–349.  https://doi.org/10.1007/s40831-016-0096-y CrossRefGoogle Scholar
  25. 25.
    Chan CCY, Kirk DW (1999) Behaviour of metals under the conditions of roasting MSW incinerator fly ash with chlorinating agents. J Hazard Mater 64:75–89.  https://doi.org/10.1016/s0304-3894(98)00227-1 CrossRefGoogle Scholar
  26. 26.
    Fraissler G, Joeller M, Mattenberger H, Brunner T, Obernberger I (2009) Thermodynamic equilibrium calculations concerning the removal of heavy metals from sewage sludge ash by chlorination. Chem Eng Process 48:152–164.  https://doi.org/10.1016/j.cep.2008.03.009 CrossRefGoogle Scholar
  27. 27.
    Jakob A, Stucki S, Struis RPWJ (1996) Complete heavy metal removal from fly ash by heat treatment: Influence of chlorides an evaporation rates. Environ Sci Technol 30:3275–3283.  https://doi.org/10.1021/es960059z CrossRefGoogle Scholar
  28. 28.
    Isaksson Ö, Lehner T (2000) The rönnskär smelter project: production, expansion, and start-up. JOM 52:26–29.  https://doi.org/10.1007/s11837-000-0169-y CrossRefGoogle Scholar
  29. 29.
    Bale CW, Chartrand P, Decterov SA, Eriksson G, Gheribi AE, Hack K, Jung IH, Kang YB, Melançon J, Pelton AD, Petersen S, Robelin C, Sangster J, Van Ende MA (2016) FactSage Thermochemical software and databases, 2010–2016, Calphad, vol. 54, pp 35–53. www.factsage.com.
  30. 30.
    Pelton AD, Eriksson G, Romero-Serrano JA (1993) Calculation of sulfide capacities of multicomponent slags. Metall Trans 24B:817–825CrossRefGoogle Scholar
  31. 31.
    Pelton AD (1999) Thermodynamic calculation of gas solubilities in oxide melts and glasses. Glastechnische Berichte 72:214–226Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.KU LeuvenLeuvenBelgium
  2. 2.Umicore ResearchOlenBelgium
  3. 3.UmicoreHobokenBelgium

Personalised recommendations