Journal of Sustainable Metallurgy

, Volume 5, Issue 4, pp 449–462 | Cite as

Recycling Ladle Furnace Slag as Flux in Steelmaking: A Review

  • Suguna Soumya VaranasiEmail author
  • Venu Madhava Rao More
  • M. Bhaskar Venkata Rao
  • Sankar Reddy Alli
  • Anil Kumar Tangudu
  • Dey Santanu
Review Article


The use of synthetic fluxes in secondary steelmaking not only improves the properties of top slag and steel quality but also increases the production cost. Ladle furnace (LF) slag can be used as a replacement to synthetic fluxes owing to its chemical and mineralogical compositions. Valorization of LF slag helps in sustainable steelmaking and also reduces steel production cost. In spite of beneficial composition, valorization of LF slag is difficult due to its disintegration phenomenon. The present paper reviews on the importance of ladle flux usage, various methods available to prevent disintegration of LF slags, and possibilities to recycle LF slags as a flux in the steelmaking. The paper helps steel plant operators to select a suitable option for recycling LF slags as a flux in steelmaking.


Ladle furnace slag Recycling Steelmaking Ladle flux Disintegration Valorization 



The authors would like to thank Dr.A. Syamsundar for technical support and the management of RINL-Visakhapatnam Steel plant for administrative support.


This research received no external funding.

Compliance with Ethical Standards

Conflicts of interest

The authors declare no conflict of interest.


  1. 1.
    Vlcek J et al (2013) Slags from steel production: properties and their utilization. Metalurgija 52(3):329–333Google Scholar
  2. 2.
    Yi H, Xu G, Cheng H et al (2012) An overview of utilization of Steel slag. Procedia Environ Sci 16:791–801. CrossRefGoogle Scholar
  3. 3.
    Dienaar R (2013) Industrial uses of slags (the use and re-use of iron and steelmaking slags). Ironamk Steelmak 32:35–46. CrossRefGoogle Scholar
  4. 4.
    Radenović A, Malina J, Sofilić T (2013) Characterization of ladle furnace slag from carbon steel production as a potential adsorbent. Adv Mater Sci Eng. CrossRefGoogle Scholar
  5. 5.
    Mihok Ľ et al (2006) Utilization of ironmaking and steelmaking slags. Metalurgija 45(3):163–168Google Scholar
  6. 6.
    Manso JM, Losañez M, Polanco JA, Gonzalez JJ (2005) Ladle furnace slag in construction. J Mater Civil Eng 17:513–518CrossRefGoogle Scholar
  7. 7.
    Setién J, Hernández D, González JJ (2009) Characterization of ladle furnace basic slag for use as a construction material. Constr Build Mater 23:1788–1794. CrossRefGoogle Scholar
  8. 8.
    Chiara M, Manzi S, Lancellotti I, Kamseu E, Barbieri L, Leonelli C (2013) Mix-design and characterization of alkali activated materials based on metakaolin and ladle slag. Appl Clay Sci 73:78–85. CrossRefGoogle Scholar
  9. 9.
    Aminorroaya S, Edris H, Tohidi A, Parsi J, Zamani B (2004) Recycling of ladle furnace slags. In: 2nd international conference on process development in iron and steel making (SCANMET II) Sweden MEFOS, pp 379–384Google Scholar
  10. 10.
    Behera N, Ahmad S, Pinheiro C, Arabia S, Words K (2015) Characterization of ladle furnace slag and its utilization in steel making. In: Proceedings of METEC and 2nd european steel technology and application days (ESTAD) (TEMA Technologie Marketing AG, Aachen, Germany)Google Scholar
  11. 11.
    Lachmund H, Xie Y, Harste K (2001) Thermodynamic and kinetic aspects of the desulphurisation reaction in secondary metallurgy. Steel Res 72:452–459. CrossRefGoogle Scholar
  12. 12.
    Wcisło Z, Wcisło Z, Michaliszyn A, Baka A (2012) Role of slag in the steel refining process in the ladle. J Achiev Mater Manuf Eng 55:390–395Google Scholar
  13. 13.
  14. 14.
    Shah M, Roy S (2013) Study of LF slag composition and its correlation with the desulphurisation and cleanliness aspect of liquid steel. Int J Eng Res Appl 3:537–542Google Scholar
  15. 15.
    Viana JF, Motta MN, De Junho RP, Lagoas S, De Junho RP (2014) Steel desulphurization using sintered synthetic slag. In: Proceedings of the iron and steel technology AISTech, IndianapolisGoogle Scholar
  16. 16.
    Reis BH, Bielefeldt WV, Cezar A, Vilela F (2014) Absorption of non-metallic inclusions by steelmaking slags: a review. J Mater Res Technol 3:179–185. CrossRefGoogle Scholar
  17. 17.
    Riyahimalayeri K (2012) Slag steel ladle and non-metallic inclusions equilibria in an ASEA-SKF ladle furnace. Doctrol Thesis Department of Materials Science and Engineering School of Industrial Engineering and Management KTH Royal Institute of Technology Stockholm Sweden 2012Google Scholar
  18. 18.
    Yan P, Huang S, Van Dyck J, Guo M, Blanpain B (2014) De-sulphurisation and inclusion behaviour of stainless steel refining by using CaO–Al2O3 based slag at low sulphur levels. ISIJ Int 54:72–81. CrossRefGoogle Scholar
  19. 19.
    Pluschkell W, Miceli P, Posch V (2002) Desulphurisation of liquid steel with refining top slags european commission technical steel research.
  20. 20.
    Andersson M, Hallberg M, Jonsson L, Jonsson P (2002) Slag–metal reactions during ladle treatment with focus on desulphurisation. Ironmak Steelmak 29:224–232. CrossRefGoogle Scholar
  21. 21.
    Buľko B, Kijac J, Domovec M, Podbrezová Ž (2009) Optimalization slag composition in ladle furnace considering to effective steel desulphurisation. Acta Metall Slovaca 2:93–99Google Scholar
  22. 22.
    Tripathi NN, Nzotta M, Sandberg A, Sichen D (2004) Effect of ladle age on formation of non-metallic inclusions in ladle treatment. Ironmak Steelmak 31:235–240. CrossRefGoogle Scholar
  23. 23.
    Gavanescu A (2011) Refining of steel by using synthetic slag. Ann Fac Eng-Inter J Eng 9:177–179Google Scholar
  24. 24.
    Cho WD, Fan P (2004) Diffusional dissolution of alumina in various steelmaking slags. ISIJ Int 44:229–234. CrossRefGoogle Scholar
  25. 25.
    Haratian M (2004) The effect of calcium aluminates usage on ladle refractory life. In: Proceedings of AISTech—iron and steel technology conference, Nashville, TN, USAGoogle Scholar
  26. 26.
    Evangelista PC, Jolly R, Wöhrmeyer C, Brüggmann C (2011) Using of calcium magnesium aluminate flux with high MgO content to improve secondary steel ladle life time. Technol Metal Mater Min 8:285–290Google Scholar
  27. 27.
    Schwer JW (1984) Steel making additive composition. US Patent 4,490,173Google Scholar
  28. 28.
    Bowman BC (1988) Additive for promoting slag formation. US Patent 4,790,872Google Scholar
  29. 29.
    Yan P, Huang S, Pandelaers L et al (2013) Effect of the CaO-Al2O3-based top slag on the cleanliness of stainless steel during secondary metallurgy. Metall Mater Trans B. CrossRefGoogle Scholar
  30. 30.
    Kasimagwa I, Brabie V, Jonssob PG (2014) Slag corrosion of MgO–C refractories during secondary steel refining. Ironmak Steelmak 41:121–131. CrossRefGoogle Scholar
  31. 31.
    Li W, Chen J, Wohrmeyer C, GuanH Sun J (2013) Effect of premelted calcium-magnesium-aluminate flux on magnesia carbon brick. Adv Mat Res 683:639–642. CrossRefGoogle Scholar
  32. 32.
    Socha L, Bažan J, Gryc K, Machovčák P, Opler A, Trefil A, Styrnal P, Melecky J (2012) Evaluation of slag regime in ladle during utilization of briquetted synthetic slag in VHM a.s. Arch Mater Sci Eng 57:80–87Google Scholar
  33. 33.
    Memoli F, Mapelli C, Guzzon M (2007) Recycling of ladle slag in the EAF: a way to improve environmental conditions and reduce variable costs in steel plants. Iron Steel Tech 4:68–76Google Scholar
  34. 34.
    Kim Y, Yoo J, Kim D, Lim J, Yang S (2013) A study on the recycling of molten ladle slag residue into LF process. J Korean Inst Resour Recycl 22:36–41Google Scholar
  35. 35.
    Branca TA, Colla V, Valentini R (2009) A way to reduce environmental impact of ladle furnace slag. Ironmak Steelmak 36:597–602. CrossRefGoogle Scholar
  36. 36.
    Chaubal P, Pistorius PC, Pal U (2016) Advances in molten slags fluxes and salts. In: Proceedings of the 10th international conference on molten slags fluxes and salts 2016, pp 1031–1039Google Scholar
  37. 37.
    Yang Q, Tossavainen M, Engstrom F, Yang Q, Menad N, Lidstrom Larsson M, Bjorkman B (2015) Characteristics of steel slag under different cooling conditions. Waste Manage 27:1335–1344Google Scholar
  38. 38.
    Nicolae M, Vîlciu I, Man FZĂ (2007) X-ray diffraction analysis of steel slag and blast furnace slag viewing their use for road construction. Sci Bull B Chem Mater Sci 69:100–108Google Scholar
  39. 39.
    Bharati S, Basavaraja VM, Jagadeesha RJ, Jagteri K, Sah R, Prasad G, Behl T, Manjini S (2018) From waste to wealth: recycling the secondary resource from steel ladle as a flux in Si-killed steelmaking process. Ironmak Steelmak. CrossRefGoogle Scholar
  40. 40.
    Dahlin A, Tilliander A, Eriksson J, Jonsson PG (2012) Influence of ladle slag additions on BOF process performance. Ironmak Steelmak 39:378–385. CrossRefGoogle Scholar
  41. 41.
    Wang Y, Yang S, Li J, Wang F, Gu Y (2017) Cyclic use of ladle furnace refining slag for desulfurization. J Sustain Metall 3:274–279. CrossRefGoogle Scholar
  42. 42.
    Dziarmagowski M, Zawada B (2009) Possibilities for the utilisation of steelmaking slags for the production of slag forming materials. Arch Metall Mater 54:829–836Google Scholar
  43. 43.
    Varanasi SS, Pathak RK, Sahoo KK et al (2019) Effect of CaO-Al2O3 based synthetic slag additions on desulphurisation kinetics of ladle furnace refining. Trans Indian Inst Met. CrossRefGoogle Scholar
  44. 44.
    Seki A, Aso Y, Okubo M, Sudo F, Ishizaka K (1986) Development of dusting prevention stabilizer for stainless steel slag. Kawasaki Steel Giho 18:16–21Google Scholar
  45. 45.
    Durinck D, Engström F, Arnout S, Heulens J, Tom Jones P, Björkman B, Blanpain B, Wollants P (2008) Hot stage processing of metallurgical slags. Resour Conserv Recyc 52:1121–1131. CrossRefGoogle Scholar
  46. 46.
    Pontikes Y, Jones PT, Geysen D, Blanpain B (2010) Options to prevent dicalcium silicate-driven disintegration of stainless steel slags. Arch Metall Mater 55:1167–1172. CrossRefGoogle Scholar
  47. 47.
    Durinck D, Jones PT, Arnout S, Blanpain B (2009) Stainless steel slag valorisation: on stability and disintegration. In: Proceedings of first international slag valorisation symposium, Leuven, Belgium, pp 81–91Google Scholar
  48. 48.
    Groves GW (1983) Phase transformations in dicalcium silicate. J Mater Sci 18:1615–1624. CrossRefGoogle Scholar
  49. 49.
    Pontikes Y, Kriskova L, Wang X, Geysen D, Arnout S, Nagels E, Cizer Ö, Van Gerven T, Elsen J, Guo M, Jones PT, Blanpain B (2011) Additions of industrial residues for hot stage engineering of stainless steel slags. Proccedings of second international slag valorisation symposium, 2011. Belgium, Leuven, pp 313–326Google Scholar
  50. 50.
    Fletcher JG, Glasser FP (1993) Phase relations in the system CaO-B2O3-SiO2. J Mater Sci 28:2677–2686. CrossRefGoogle Scholar
  51. 51.
    Durinck D, Arnout S, Mertens G, Boydens E, Tom Jones P, Elsen J, Blanpain B, Wollants P (2008) Borate distribution in stabilized stainless-steel slag. J Am Ceram Soc 91:548–554. CrossRefGoogle Scholar
  52. 52.
    Harada M, Tomari M (1991) Method of modifying steel slag. US Patent 5,019,160Google Scholar
  53. 53.
    Ishizaka K, Sudo F, Seki A, Aso Y (1987) Method of stabilizing a steel making slag. US Patent 4,655,831Google Scholar
  54. 54.
    The Institute of Materials Minerals and Mining. Slag solutions in steel.
  55. 55.
    Yan P, Nie P, Huang S, Blanpain B, Guo M (2014) Sulphide capacity and mineralogy of BaO and B2O3 modified CaO–Al2O3 top Slag. ISIJ Int 54:1570–1577. CrossRefGoogle Scholar
  56. 56.
    Wang H, Zhang T, Zhu H, Li G, Yan Y, Wang J (2011) Effect of B2O3 on melting temperature viscosity and desulfurization capacity of CaO-based refining flux. ISIJ Int 51:702–706. CrossRefGoogle Scholar
  57. 57.
    Ghorai S, Mandal GK, Roy S, Minj RK, Agarwal A, Singh DP, Kumar A, Ramna RBV (2017) Treatment of LF slag to prevent powdering during cooling. J Min Metall Sec B-Metall 53:123–130CrossRefGoogle Scholar
  58. 58.
    Yang Q, Engström F, Björkman B, Adolfsson D (2009) Modification study of a steel slag to prevent the slag disintegration after metal recovery and to enhance slag utilization. In: Molten 2009: proceedings of the VIII international conference on molten slags fluxes & salts, 18–21 January 2009, Santiago, Chile, pp 33–41Google Scholar
  59. 59.
    Engström F, Pontikes Y, Geysen D, Jones PT, Björkman B, Blanpain B (2011) Hot stage slag engineering as a method to improve slag valorisation options. In: Proccedings of second international slag valorisation symposium 2011, Leuven, BelgiumGoogle Scholar
  60. 60.
    Huang S, Guo M, Jones PT, Blanpain B (2013) Fayalite slag modified stainless steel AOD-slag. In: Proceedings of third international slag valorisation symposium 19–20 March 2013Google Scholar
  61. 61.
    Kitamura S, Maruoka N (2009) Modification of stainless steel refining slag through mixing with nonferrous smelting slag. In: Jones PT, Geysen D, Guo M, Blanpain B (eds) First international slag valorisation symposium, 2009, Leuven, BelgiumGoogle Scholar
  62. 62.
    Sheshukov OY, Nekrasov IV, Mikheenkov MA (2016) Stabilization of refining slags by correction of their phase composition. Steel Translat 46:339–342. CrossRefGoogle Scholar
  63. 63.
    Harada G, Yen T, Tomari M (1979) Process for treating molten steel slag with red mud from aluminum industry. US Patent 4,179,279Google Scholar
  64. 64.
    Global Slag (2013) Stabilisation of CaO-SiO2-MgO (CSM) slags by recycled alumina. No. 6
  65. 65.
  66. 66.
    Eriksson J, Björkman B (2004) MgO modification of slag from stainless steelmaking. In: International conference on molten slags fluxes and salts VII, Cape Town, ZA, Jan 25–28, 2004, pp 455–459Google Scholar
  67. 67.
    Sakamoto N, Hirose M, Aoyagi K et al (1996) Effect of cooling process to crystallization of stainless steel slag (development of control process of stainless steel slag dusting-1). Curr Adv Mater Process 9(4):803Google Scholar
  68. 68.
    Keith K, Craig P, Manning J (2001) Process for stabilizing and reusing ladle furnace slag. US Patent 6,189,818 B1Google Scholar
  69. 69.
    Choudary SK, Chandra S (2007) Castability of Mn–Si killed low carbon wire rod steel. ISIJ Int 47:190–192. CrossRefGoogle Scholar
  70. 70.
    Behera N, Raddadi A, Ahmad S, Tewari N, Zeghaibi O (2016) Use of Al-killed ladle furnace slag in Si-killed steel process to redue lime consumption improve slag fluidity. In: Proceedings of the 10th international conference on Advances in molten slags fluxes and salts 2016, pp 1031–1039Google Scholar
  71. 71.
    Danilov EV (2003) Modern technology for recycling steel making slags. Metallurgist 47:232. CrossRefGoogle Scholar
  72. 72.
    Memoli F, Mapelli C, Guzzon M (2006) Recycling of ladle slag in the EAF: improvement of the foaming behaviour and decrease of the environmental impact. In: ATS international steel making conference, Pris, December 14–15, 2006Google Scholar
  73. 73.
    Fleischanderl A, Gennari U, Ilie A (2004) Zewa—metallurgical process for treatment of residues from steel industry and other industrial sectors to generate valuable products. Ironmak Steelmak 31:444–449. CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Research and Development CentreRINL-Visakhapatnam Steel PlantVisakhapatnamIndia
  2. 2.Corporate OfficeRINL-Visakhapatnam Steel PlantVisakhapatnamIndia
  3. 3.Steel Melt Shop-2RINL-Visakhapatnam Steel PlantVisakhapatnamIndia

Personalised recommendations