Introduction of Steelmaking Process with Resource Recycling

  • Tadashi Manabe
  • Masaki MiyataEmail author
  • Kazuo Ohnuki
Thematic Section: Sustainable Iron and Steelmaking
Part of the following topical collections:
  1. Sustainable Iron and Steelmaking


Steel scrap does not need reduction energy, unlike iron ore. Therefore, it is efficient in terms of recycling steel resources and suppressing CO2 gas emissions when melting large quantities of scrap. Various methods of melting scrap with converter have been reported, including a heat supply method and a steelmaking process using scrap melting, and scrap melting has been shown to be superior in terms of energy consumption. In 1993, Hirohata Works of Nippon Steel & Sumitomo Metal Corporation commercially established a new process, called scrap melting process (SMP). The SMP utilizes steel scrap as its principal metal source to produce hot metal saving the reduction energy of iron ore. The SMP has served as the core process to recycle raw materials and fuels including waste tires. This article describes the scrap melting process, dust-reduction process and waste-tire recycling technology as core technologies and outlines Hirohata’s activities to recycle resources and the environmentally friendly technology that support these activities.


CO2 gas emissions Scrap melting Dust reduction Waste-tire recycling 



  1. 1.
    Umezawa K (1992) Scrap melting process—current status and future prospect. Tetsu-to-Hagané 78:520–526 (Japanese)CrossRefGoogle Scholar
  2. 2.
    Kishimoto Y, Takahashi Y, Takeuchi S, Fujii T, Nozaki T (1987) Scrap melting and Cr ore smelting with the use of pulverized coal combustion lance in a 5 ton scale converter. Tetsu-to-Hagané 73:A35–A38 (Japanese)Google Scholar
  3. 3.
    Harada T, Ando M, Goto H, Kawaguchi K, Oomori M, Tsujino R (1985) Development of post combustion promotion technology in converter. Tetsu-to-Hagané 71:S187 (Japanese)Google Scholar
  4. 4.
    Fukushima T, Matsumoto H, Matsui H, Takeuchi M, Genma N (1985) Result of post combustion test in 240 ton scale top and bottom blown converter. Tetsu-to-Hagané 71:S1042 (Japanese)Google Scholar
  5. 5.
    Takashiba N, Nira M, Kojima S, Take H, Yoshikawa F (1989) Development of the post combustion technique in combined blowing converter. Tetsu-to-Hagané 75:89–96 (Japanese)CrossRefGoogle Scholar
  6. 6.
    Okamura S, Nakajima H, Marukawa K, Anezaki S, Tozaki Y, Mori A, Katogi K, Ichihara K (1985) Improvement of the heat balance in combined blowing process of the LD converter. Tetsu-to-Hagané 71:1787–1794 (Japanese)CrossRefGoogle Scholar
  7. 7.
    Taoka K, Yamada S, Sudo F, Nomura H, Katsuki J (1984) Development of the post combustion technique in combined blowing converter. Tetsu-to-Hagané 70:S1027 (Japanese)Google Scholar
  8. 8.
    Ishikawa H, Nimura Y, Hirano M, Terada O, Miyawaki Y (1984) Development of post combustion promotion lance in converter. Tetsu-to-Hagané 70:S1028 (Japanese)CrossRefGoogle Scholar
  9. 9.
    Takahashi Y, Kishimoto Y, Takeuchi S, Fujii T, Nozaki T (1987) Development of post combustion promotion lance in test converter. Tetsu-to-Hagané 73:S216 (Japanese)CrossRefGoogle Scholar
  10. 10.
    Ishikawa M, Katogi K, Shimamura K, Hirata T, Shirota Y, Suzuki Y (1986) Basic test on secondary combustion in converter. Tetsu-to-Hagané 72:S181 (Japanese)Google Scholar
  11. 11.
    Ishikawa M, Katogi K, Suzuki Y, Hirara T, Shirota Y, Anezaki S (1986) Discussion of post combustion mechanism in converter. Tetsu-to-Hagané 72:S1007 (Japanese)Google Scholar
  12. 12.
    Hirai M, Tsujino R, Mukai T, Harada T, Omori M (1987) Post combustion mechanism in converter. Tetsu-to-Hagané 73:1117–1124 (Japanese)CrossRefGoogle Scholar
  13. 13.
    Tomita K, Otani K, Hirose I, Fukuda T, Tomimatsu F (1984) Basic study on post combustion characteristics in converter. Tetsu-to-Hagané 70:S1041 (Japanese)Google Scholar
  14. 14.
    Saito C, Nakamura Y, Ishikawa H, Yamamoto S, Baba K, Kyojima Y (1984) Heat balance analysis in 10 ton scale converter. Tetsu-to-Hagané 70:S1030CrossRefGoogle Scholar
  15. 15.
    Nishioka S, Nakamura H, Takahashi K, Kawai Y, Sugiyama S (1990) Fundamental study on post-combustion technique in strongly stirred iron bath reactor. Tetsu-to-Hagané 76:2019–2024 (Japanese)CrossRefGoogle Scholar
  16. 16.
    Kato Y, Grosjean J, Reboul J, Riboud P (1989) Theoretical study on gas flow and heat and mass transfer in a converter. Tetsu-to-Hagané 75:478–485 (Japanese)CrossRefGoogle Scholar
  17. 17.
    Harada T, Nakamura K, Murakami Y, Ando M, Mori M, Tsujino R (1986) Coal blowing into the converter. Tetsu-to-Hagané 72:S183 (Japanese)Google Scholar
  18. 18.
    Narazaki S, Katsunori K, Omori M, Nakamura K, Harada T (1986) Coal blowing model experiment into the converter. Tetsu-to-Hagané 72:S184 (Japanese)Google Scholar
  19. 19.
    Kamei K, Shima H, Matsumoto N, Minami A, Nobumoto A, Oonuki K (1994) Equipment and operation of scrap melting process. CAMP-ISIJ 7:28 (Japanese)Google Scholar
  20. 20.
    Ikeda K, Sakurai K, Yamauchi H, Miwa M, Kobayashi H (2000) The shinseiko project: a new environmentally friendly steelmaking process from scrap. CAMP-ISIJ 13:772 (Japanese)Google Scholar
  21. 21.
    Yamashita K, Harada T, Koga Y, Shigeyama Y, Fuchimoto S (2000) Construction and start-up of SSE-equipment. CAMP-ISIJ 13:775 (Japanese)Google Scholar
  22. 22.
    Kobayashi H, Eba A, Matsuoka S (2000) The feasibility study of SSE program (Integrated system evaluation) in shinseiko project. CAMP-ISIJ 13:791. (Japanese)Google Scholar
  23. 23.
    Furukawa T (1998) 35th Shiraishi Memorial Seminar, ISIJ, Tokyo, pp 41–60 (Japanese)Google Scholar
  24. 24.
    Sasamoto H (1997) Present situation and problem of iron making industry dust treatment. CAMP-ISIJ 10:2 (Japanese)Google Scholar
  25. 25.
    Ono N, Mochida J (1998) Zn balance at Yawata works and prospect. CAMP-ISIJ 11:929 (Japanese)Google Scholar
  26. 26.
    Ito S, Azakami T (1988) J Min Metall Inst Jpn 104:297–302 (Japanese)Google Scholar
  27. 27.
    Ito S, Azakami T (1988) J Min Metall Inst Jpn 104:821–827 (Japanese)Google Scholar
  28. 28.
    Nakano M, Okada T, Hasegawa H, Sakakibara M (2000) Coke breeze-less sintering of BOF dust and its capability of dezincing. ISIJ Int 40:238–243CrossRefGoogle Scholar
  29. 29.
    Inaba S (2001) Overview of new direct reduction iron technology. Tetsu-to-Hagané 87:221–227 (Japanese)CrossRefGoogle Scholar
  30. 30.
    Morikawa E, Kitamura K, Kochihira G (1998) Dust recycling technology by rotary kiln at Kashima steel works. Sumitomo Met. 50:42–45 (Japanese)Google Scholar
  31. 31.
    Hara Y, Ishiwata N, Miyagawa M, Itaya H, Nomura S, Matsumoto T (1997) Development of the smelting reduction process with coke packed bed for BOF dust and electric furnace dust. CAMP-ISIJ 10:18 (Japanese)Google Scholar
  32. 32.
    Deegan ED, Wise HLM, Slinn M, Johnson PT (2010) Waste recovery in ironmaking and steelmaking processes. The plasma processing of steel plant wastes”, IOM3 conference, No.5Google Scholar
  33. 33.
    Sugitatsu H, Kobayashi I, Tanaka H, Harada T (2002) Reduction of CO2 emission by coal based direct reduction process. CAMP-ISIJ 15:917 (Japanese)Google Scholar
  34. 34.
    Haga T, Kato K, Ibaraki T (2011) Development for saving natural resources and material recycling. Sinnittetsu Giho 391:194–200 (Japanese)Google Scholar
  35. 35.
    Murakami T, Akiyama T, Kasai E (2009) Reduction behavior of hematite composite containing polyethylene and graphite with different structures with increasing temperature. ISIJ Int 49:809–814CrossRefGoogle Scholar
  36. 36.
    Murakami T, Kasai E (2011) Reduction mechanism of iron oxide-carbon composite with polyethylene at lower temperature. ISIJ Int 51:9–13CrossRefGoogle Scholar
  37. 37.
    Bagatini CM, Zymila V, Osorio E, Vileta FCA (2011) Characterization and reduction behavior of mill scale. ISIJ Int 51:1072–1079CrossRefGoogle Scholar
  38. 38.
    Kawanari M, Matsumoto A, Ashida R, Miura K (2011) Enhancement of reduction rate of iron ore by utilizing iron ore/carbon composite consisting of fine iron ore particles and highly thermoplastic carbon material. ISIJ Int 51:1227–1233CrossRefGoogle Scholar
  39. 39.
    Miura K, Miyabayashi K, Kawanari M, Ashida R (2011) Enhancement of reduction rate of iron ore utilizing low grade iron ore and brown coal derived carbonaceous materials. ISIJ Int 51:1234–1239CrossRefGoogle Scholar
  40. 40.
    Kuwauchi Y, Barati M (2013) A mathematical model for carbothermic reduction of dust-carbon composite agglomerates. ISIJ Int 53:1097–1105CrossRefGoogle Scholar
  41. 41.
    Okada E (1996) Recycling of waste tires. J Soc Rubber Sci Technol Jpn 69:770–780 (Japanese)CrossRefGoogle Scholar
  42. 42.
    Kawakami S (2002) Recent trends of tire recycling. Sen’i Gakkaishi 58:84 (Japanese)CrossRefGoogle Scholar
  43. 43.
    Fukuhara Y (2007) Cement manufacturing and recycling of waste material. J MMIJ 123:855CrossRefGoogle Scholar
  44. 44.
    Watanabe T (1999) Material and thermal recycle in cement production and new recycle process of unutilized waste material. Resour Process 46:91–94 (Japanese)CrossRefGoogle Scholar
  45. 45.
    Taniguchi N (2014) Approach to fuel diversification at the Akita Plant of Nippon Paper Industries Co., Ltd. Proceedings of the 23rd annual meeting of the Japan society of sonochemistry 23:S1 (Japanese)Google Scholar
  46. 46.
    Yokoshiki T (2003) Development and operation results of recycle fuel fired bubbling fluidized bed boiler. Japan TAPPI J 57:633 (Japanese)CrossRefGoogle Scholar
  47. 47.
    Sato Y (1997) Current situation of waste tire recycling and new technology. Shigen-to-Sozai 113:999–1004 (Japanese)CrossRefGoogle Scholar
  48. 48.
    Nishi S, Sato K, Fujikawa T, Koga C, Fukuoka T (2016) Effective utilization of incinerated ash derived from tire fuel as a material for asphalt paving focusing on suppressing deterioration of ultraviolet rays. Proceedings of the 27th annual conference of japan society of material cycles and waste management B1–8PGoogle Scholar
  49. 49.
    Nakao Y, Yamamoto K (2002) Waste tire recycle and its collection system. Sinnittetsu Giho 376:20–23 (Japanese)Google Scholar
  50. 50.
    Kumazawa H, Eba A (2005) Development of waste tire recycling system in scrap melting furnace. CAMP-ISIJ 18:199 (Japanese)Google Scholar
  51. 51.
    Nyuu H, Manabe T, Mizoguchi R, Yamamoto S, Fukuda K, Kumazawa H, Ohnuki K, Nishimura T, Nishimura H, Kobayashi A (2007) Development of waste tire recycling system using steelmaking process. CAMP-ISIJ 20:913 (Japanese)Google Scholar
  52. 52.
    Isobe K, Maede H, Ozawa K, Umezawa K, Saito C (1990) Analysis of the scrap melting rate in high carbon molten iron. Tetsu-to-Hagané 76:2033–2040 (Japanese)CrossRefGoogle Scholar
  53. 53.
    Miyabe S, Kudo I, Yazaki H, Isobe K (1990) Explanation of scrap smelting characteristics by model experiment (Development of scrap smelting model in the scrap and solid pig iron smelting process—1). CAMP-ISIJ 3:1140 (Japanese)Google Scholar
  54. 54.
    Tanaka T, Kudo I, Miyabe S, Yazaki H, Tanaka S, Ishii H (1991) Development of on-line scrap melting model (Development of scrap smelting model in the scrap smelting process—2). CAMP-ISIJ 4:1299 (Japanese)Google Scholar
  55. 55.
    Ohnuki K, Umezawa K, Matsumoto N, Inoue T, Kuwabara T (1993) Development of scrap melting process with hot heel method by improving BOF. CAMP-ISIJ 6:1028 (Japanese)Google Scholar
  56. 56.
    Iguchi M, Yamazaki T, Matsumoto K (2012) Environmental friendly process technology at Hirohata Works. Sinnittetsu Giho 394:98–102 (Japanese)Google Scholar
  57. 57.
    Aoki T, Fukuda K, Matsuoka H, Nobumoto A, Matsumoto N, Taira H (1994) Development of tuyere in scrap melting process. CAMP-ISIJ 7:29 (Japanese)Google Scholar
  58. 58.
    Tanaka H, Shimizu M (2009) Environmental impact mitigation by using coal-based direct reduction technology. Journal of MMIJ 125:630 (Japanese)CrossRefGoogle Scholar
  59. 59.
    Sawai T, Ohnuki K, Kumazawa H, Manabe T, Yamamoto H (2001) Pyrolysis behavior in rapid heating tire chips. CAMP-ISIJ 14:105 (Japanese)Google Scholar
  60. 60.
    Sawai T, Ohnuki K, Kumazawa H, Manabe T, Matsumoto H (2001) Gas reaction by generated hydrocarbon in pyrolysis of tire chips. CAMP-ISIJ 14:106 (Japanese)Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Hirohata Works, Production & Technical Control Div.Nippon Steel & Sumitomo Metal CorporationHimejiJapan
  2. 2.Hirohata R&D Lab., R&D Lab.Nippon Steel & Sumitomo Metal CorporationHimejiJapan
  3. 3.Hirohata UnitNippon Steel & Sumikin Technology Co.,Ltd.HimejiJapan

Personalised recommendations