Journal of Sustainable Metallurgy

, Volume 5, Issue 1, pp 127–140 | Cite as

A Review on Reclamation and Reutilization of Ironmaking and Steelmaking Slags

  • Zhanjun Wang
  • Il SohnEmail author
Review Article


Ironmaking and steelmaking slags are the dominant byproducts in metallurgical processes, and the up-cycling and re-cycling of slags are essential to the sustainability of the metallurgical industry. As the metallurgical slags contain significant valuable elements, these slags can be re-utilized as a stand-alone product or as additives for other products after valuable elements are effectively separated. Several areas for slag application are discussed in this review including internal reuse of the slag within the metallurgical process, civil construction and building materials, and future potential applications. To ensure greater reclamation of the slags, fundamental studies regarding crystallization and elemental redistribution of the metal cation in the slags are also examined.


Ironmaking slags Steelmaking slags Reclamation Crystallization Elemental re-distribution 



This work was supported by the Brain Korea 21 Plus Project and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2018R1A2B2006609).

Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author declares that there are no conflicts of interest.


  1. 1.
  2. 2.
    Guo J, Bao Y, Wang M (2018) Steel slag in China: treatment, recycling, and management. Waste Manage (Oxford) 78:318–330CrossRefGoogle Scholar
  3. 3.
    Nippon Slag Association.
  4. 4.
    Matino I, Colla V, Romaniello L, Rosito F, Portulano L (2015) Simulation techniques for an efficient use of resources: an overview for the steelmaking field. In: 2015 World Congress Sustainable Technologies (WCST), IEEE, pp 48–54Google Scholar
  5. 5.
    Yellishetty M, Mudd GM (2014) Substance flow analysis of steel and long term sustainability of iron ore resources in Australia, Brazil, China and India. J Clean Prod 84:400–410CrossRefGoogle Scholar
  6. 6.
    Vaverka J, Sakurai K (2014) Quantitative determination of free lime amount in steelmaking slag by X-ray diffraction. ISIJ Int 54:1334–1337CrossRefGoogle Scholar
  7. 7.
    Wang ZJ, Shu QF, Seetharaman S, Zhang M, Guo M, Zhang ZT (2015) Effect of P2O5 and FetO on the viscosity and slag structure in steelmaking slags. Metall Mater Trans B 12:758–765CrossRefGoogle Scholar
  8. 8.
    Gomes JF, Ascenço CG (2006) Leaching of heavy metals from steelmaking slags. Rev Metal Madrid 42:409–416CrossRefGoogle Scholar
  9. 9.
    Wang X, Mao Y, Liu X, Zhu Y (1990) Study on crystallization behavior for blast furnace slag containing TiO2. J Iron Steel Res 3:1–6Google Scholar
  10. 10.
    Wang X, Mao Y, Xie D, Zhu Y (1993) Crystallization behavior of the blast furnace slag with titanium at the reduction state. J Anhui Univ of Technol 19–23Google Scholar
  11. 11.
    Wang MH, Du HX, Sui ZT (2000) Recovery of titanium from rich titanium blast furnace slag by sulfate method. Multi Utility Miner Res 4:5–8Google Scholar
  12. 12.
    Wang M, Li L, Li Z, Zhang L, Tu G, Sui Z (2006) Effect of oxidization on enrichment behavior of TiO2 in titanium-bearing slag. Rare Met 25:106–110CrossRefGoogle Scholar
  13. 13.
    Zhao D, Zhang Z, Tang X, Liu L, Wang X (2014) Preparation of slag wool by integrated waste-heat recovery and resource recycling of molten blast furnace slags: from fundamental to industrial application. Energies 7:3121–3135CrossRefGoogle Scholar
  14. 14.
    Pal SC, Mukherjee A, Pathak SR (2003) Investigation of hydraulic activity of ground granulated blast furnace slag in concrete. Cem Concr Res 33:1481–1486CrossRefGoogle Scholar
  15. 15.
    Min DJ, Tsukihashi F (2017) Recent advances in understanding physical properties of metallurgical slags. Met Mater Int 23:1–19CrossRefGoogle Scholar
  16. 16.
    Wang Z, Sun Y, Seetharaman S, Zhang M, Guo M, Guo Z, Zhang Z (2016) Viscous flow and crystallization behaviors of P-bearing steelmaking slags with varying fluorine content. ISIJ Int 56:546–553CrossRefGoogle Scholar
  17. 17.
    Das B, Prakash S, Reddy P, Misra V (2007) An overview of utilization of slag and sludge from steel industries. Resour Conserv Recycl 50:40–57CrossRefGoogle Scholar
  18. 18.
    Escalante JI, Gómez LY, Johal KK, Mendoza G, Mancha H, Méndez J (2001) Reactivity of blast-furnace slag in Portland cement blends hydrated under different conditions. Cement Concrete Res 31:1403–1409CrossRefGoogle Scholar
  19. 19.
    Itoh T (2004) Rapid discrimination of the character of the water-cooled blast furnace slag used for Portland slag cement. J Mater Sci 39:2191–2193CrossRefGoogle Scholar
  20. 20.
    Gong XJ, Jia F, Liu R, Ye F, Guan H, Wang R, Guo G (2014) Study on preparation and photocatalytic activity of photocatalyst made from Ti-bearing blast furnace slag. Appl Mech Mater 526:33–39CrossRefGoogle Scholar
  21. 21.
    Lei X, Xue X, He Y (2012) Preparation of UV-visible light responsive photocatalyst from titania-bearing blast furnace slag modified with (NH4)2SO4. Trans Nonferrous Met Soc 22:1771–1777CrossRefGoogle Scholar
  22. 22.
    Li Z, Xu C (2007) The smelting process of titanium-silicon ferroalloy using blast furnace titaniferous slag. ISIJ Int 36:279–283Google Scholar
  23. 23.
    Li J, Zhang ZT, Wang XD (2012) Precipitation behavior of Ti enriched phase in Ti bearing slag. Ironmak Steelmak 39:414–418CrossRefGoogle Scholar
  24. 24.
    Li J, Wang X, Zhang Z (2011) Crystallization behavior of rutile in the synthesized Ti-bearing blast furnace slag using single hot thermocouple technique. ISIJ Int 51:1396–1402CrossRefGoogle Scholar
  25. 25.
    Li J, Zhang Z, Zhang M, Guo M, Wang X (2011) The influence of SiO2 on the extraction of Ti element from Ti-bearing blast furnace slag. Steel Res Int 82:607–614CrossRefGoogle Scholar
  26. 26.
    Li J, Zhang Z, Liu L, Wang W, Wang X (2013) Influence of basicity and TiO2 content on the precipitation behavior of the Ti-bearing blast furnace slags. ISIJ Int 53:1696–1703CrossRefGoogle Scholar
  27. 27.
    Hu M, Wei R, Gao L, Liu L, Bai C (2018) Effect of the basicity on the crystallization behavior of titanium bearing blast furnace slag. High Temp Mater Proc 37:193–200CrossRefGoogle Scholar
  28. 28.
    Hu M, Qu Z, Lv X, Gan Y (2016) Precipitation behavior of titanium bearing blast furnace slag. In: Proceedings of the 10th international conference on molten slags, fluxes and salts, pp 1261–1270Google Scholar
  29. 29.
    Hu M, Wei R, Yin F, Liu L, Deng Q (2016) Effect of TiO2 content on the crystallization behavior of titanium-bearing blast furnace slag. JOM 68:2502–2510CrossRefGoogle Scholar
  30. 30.
    Liu L, Hu M, Xu Y, Bai C, Gan Y (2015) Structure, growth process, and growth mechanism of perovskite in high-titanium-bearing blast furnace slag. Metall Mater Trans B 46:1751–1759CrossRefGoogle Scholar
  31. 31.
    Liu L, Hu M, Bai C, Lv X, Wen L, Zhang S (2014) In situ observation of the crystallization process of perovskite in titanium-bearing blast furnace slag. Min Proc Ext Met 123:241–245CrossRefGoogle Scholar
  32. 32.
    Hu M, Liu L, Lv X, Bai C, Zhang S (2014) Crystallization behavior of perovskite in the synthesized high-titanium-bearing blast furnace slag using confocal scanning laser microscope. Metall Mater Trans B 45:76–85CrossRefGoogle Scholar
  33. 33.
    Zhang W, Zhang L, Feng NX (2013) Effect of oxidation on phase transformation in Ti-bearing blast furnace slag. Adv Mater Res 641–642:363–366Google Scholar
  34. 34.
    Zhang W, Zhang L, Zhang J, Feng NX (2012) Crystallization and coarsening kinetics of rutile phase in modified Ti-bearing blast furnace slag. Ind Eng Chem Res 51:12294–12298Google Scholar
  35. 35.
    Wang Z, Liu X, Zhang L, Zhu Q (2016) The influence of composition on crystallization and liberation behavior of Ti-rich phase in Ti-bearing slags. Trans Indian Inst Met 69:97–105CrossRefGoogle Scholar
  36. 36.
    Li Z, Li J, Sun Y, Seetharaman S, Liu L, Wang X, Zhang Z (2016) Effect of Al2O3 addition on the precipitated phase transformation in Ti-bearing blast furnace slags. Metall Mater Trans B 47:1390–1399CrossRefGoogle Scholar
  37. 37.
    Sun Y, Li Z, Liu L, Wang X, Zhang Z (2015) Co-modification and crystalline-control of Ti-bearing blast furnace slags. ISIJ Int 55:158–165CrossRefGoogle Scholar
  38. 38.
    Li Z, Sun Y, Liu L, Wang X, Zhang Z (2015) Enhancement of rutile formation by ZrO2 addition in Ti-bearing blast furnace slags. ISIJ Int 55:1384–1389CrossRefGoogle Scholar
  39. 39.
    Kim GH, Sohn I (2014) Role of B2O3 on the viscosity and structure in the CaO–Al2O3–Na2O-based system. Metall Mater Trans B 45:86–95CrossRefGoogle Scholar
  40. 40.
    Kashiwaya Y, Nakauchi T, Son PK, Akiyama S, Ishii K (2007) Crystallization behaviors concerned with TTT and CCT diagrams of blast furnace slag using hot thermocouple technique. ISIJ Int 47:44–52CrossRefGoogle Scholar
  41. 41.
    Gan L, Zhang C, Zhou J, Shangguan F (2012) Continuous cooling crystallization kinetics of a molten blast furnace slag. J Non-Cryst Solids 358:20–24CrossRefGoogle Scholar
  42. 42.
    Lin B, Wang H, Zhu X, Liao Q, Ding B (2016) Crystallization properties of molten blast furnace slag at different cooling rates. Appl Therm Eng 96:432–440CrossRefGoogle Scholar
  43. 43.
    Qin Y, Lv X, Zhang J (2016) Effect of composition on the crystallization behavior of blast furnace slag using single hot thermocouple technique. Ironmak Steelmak 44:23–27CrossRefGoogle Scholar
  44. 44.
    Esfahani S, Barati M (2016) Effect of slag composition on the crystallization of synthetic CaO–SiO2–Al2O3–MgO slags: part I—crystallization behavior. J Non-Cryst Solids 436:35–43CrossRefGoogle Scholar
  45. 45.
    Zhang X, Jiang T, Xue X, Hu B (2016) Influence of MgO/Al2O3 ratio on viscosity of blast furnace slag with high Al2O3 content. Steel Res Int 87:87–94CrossRefGoogle Scholar
  46. 46.
    Kowalski M, Spencer PJ, Neuschuetz D (1995) Slag Atlas, 2nd edn. Verlag Stahleisen GmbH, DusseldorfGoogle Scholar
  47. 47.
    Ding B, Wang H, Zhu X, He XY, Liao Q, Tan Y (2016) Crystallization behaviors of blast furnace (BF) slag in a phase-change cooling process. Energ Fuel 30:3331–3339CrossRefGoogle Scholar
  48. 48.
    Semykina A, Nakano J, Sridhar S, Shatokha V, Seetharaman S (2010) Confocal microscopic studies on evolution of crystals during oxidation of the FeO–CaO–SiO2–MnO slags. Metall Mater Trans B 41:940–945CrossRefGoogle Scholar
  49. 49.
    Semykina A, Nakano J, Sridhar S, Shatokha V, Seetharaman S (2011) Confocal scanning laser microscopy studies of crystal growth during oxidation of a liquid FeO–CaO–SiO2 slag. Metall Mater Trans B 42:471–476CrossRefGoogle Scholar
  50. 50.
    Semykina A, Seetharaman S (2011) Recovery of manganese ferrite in nanoform from the metallurgical slags. Metall Mater Trans B 42:2–4CrossRefGoogle Scholar
  51. 51.
    Li J, Bhattacharjee D, Hu X, Zhang D, Sridhar S, Li Z (2017) Development of a novel process for energy and materials recovery in steelmaking slags. Min Proc Ext Met Rev 126:94–105Google Scholar
  52. 52.
    Li J, Bhattacharjee D, Hu X, Zhang D, Sridhar S, Li Z (2017) Crystallization behavior of liquid CaO–SiO2–FeO–MnO slags in moist gas atmospheres. In: Fifth international slag valorisation symposium, pp 117–120Google Scholar
  53. 53.
    Jung SS, Sohn I (2014) Crystallization control for remediation of an FetO-rich CaO–SiO2–Al2O3–MgO EAF waste slag. Environ Sci Technol 48:1886–1892CrossRefGoogle Scholar
  54. 54.
    Jung SS, Jung K, Sohn I (2016) Selective separation of Fe-concentrates in EAF slags using mechanical dissimilarity of solid phases. Metall Mater Trans A 48:1–10Google Scholar
  55. 55.
    Kim HS, Kim KS, Jung SS, Hwang JI, Choi JS, Sohn I (2015) Valorization of electric arc furnace primary steelmaking slags for cement applications. Waste Manage 41:85–93CrossRefGoogle Scholar
  56. 56.
    Liu C, Guo M, Pandelaers L, Blanpain B, Huang S, Wollants P (2017) Metal recovery from bof steel slag by carbo-thermic reduction. BHM 162:258–262CrossRefGoogle Scholar
  57. 57.
    Liu C, Huang S, Wollants P, Blanpain B, Guo M (2017) Valorization of BOF steel slag by reduction and phase modification: metal recovery and slag valorization. Metall Mater Trans B 48:1602–1612CrossRefGoogle Scholar
  58. 58.
    Wang X, Geysen D, Gerven PJ, Blanpain B, Guo M (2017) Characterization of landfilled stainless steel slags in view of metal recovery. Front Chem Sci Eng 11:1–10CrossRefGoogle Scholar
  59. 59.
    Fan Y, Zhang L, Volski V, Vandenbosch GAE, Blanpain B, Guo M (2017) Utilization of stainless-steel furnace dust as an admixture for synthesis of cement-based electromagnetic interference shielding composites. Sci Rep 7:15361–15368CrossRefGoogle Scholar
  60. 60.
    Matsubae Yokoyama K, Kubo H, Nakajima K, Nagasaka T (2009) A material flow analysis of phosphorus in Japan. J Ind Ecol 13:687–705CrossRefGoogle Scholar
  61. 61.
    Kor G (1977) Effect of fluorspar and other fluxes on slag-metal equilibria involving phosphorus and sulfur. Metall Trans B 8:107–113CrossRefGoogle Scholar
  62. 62.
    Suito H, Inoue R (1982) Effect of calcium fluoride on phosphorus distribution between MgO saturated slags of the system CaO–MgO–FeOx–SiO2 and liquid iron. ISIJ Int 22:869–877CrossRefGoogle Scholar
  63. 63.
    Berak J, Tomczakh I (1972) Phase equilibria in system Ca3(PO4)2-CaF2. Roczniki Chemii 46:2157–2164Google Scholar
  64. 64.
    Ono H, Inagaki A, Masui T, Narita H, Nosaka S, Mitsuo T, Gohda S (1981) Removal of phosphorus from ID-converter slag by floating separation of dicalcium silicate during solidification. ISIJ Int 21:135–144CrossRefGoogle Scholar
  65. 65.
    Lin L, Bao Y, Wang M, Zhou H, Zhang L (2013) Influence of SiO2 modification on phosphorus enrichment in P bearing steelmaking slag. Ironmak Steelmak 40:521–527CrossRefGoogle Scholar
  66. 66.
    Lin L, Bao YP, Wang M, Jiang W, Zhou HM (2014) Separation and recovery of phosphorus from P-bearing steelmaking slag. J Iron Steel Res Int 21:496–502CrossRefGoogle Scholar
  67. 67.
    Lin L, Bao YP, Wang M, Jiang W, Zhou HM (2014) P2O5 solubility behavior and resource utilization of P-bearing slag. ISIJ Int 54:2746–2753CrossRefGoogle Scholar
  68. 68.
    Lin L, Bao YP, Wang M, Zhou HM (2014) Influence of Al2O3 modification on phosphorus enrichment in P bearing steelmaking slag. Ironmak Steelmak 41:193–198CrossRefGoogle Scholar
  69. 69.
    Lin L, Bao YP, Yang Q, Wang M, Jiang W (2015) Effect of CaF2 and SiO2 modification on phosphorus utilization in P-bearing slag. Ironmak Steelmak 42:331–338CrossRefGoogle Scholar
  70. 70.
    Wu XR, Wang P, Li LS, Wu ZJ, Chen RH (2013) Distribution and enrichment of phosphorus in solidified BOF steelmaking slag. Ironmak Steelmak 38:185–188CrossRefGoogle Scholar
  71. 71.
    Diao J, Ke Z, Jiang L, Zhang T, Xie B (2016) Influence of Al2O3 modification on phosphorus enrichment in high phosphorus slag. Min Proc Ext Met Rev 152:103–108Google Scholar
  72. 72.
    Diao J, Xie B, Wang YH, Guo X (2010) Effect of fluorine on the minerals phase and citric acid solubility of CaO–SiO2–FetO–P2O5–CaF2 system. ISIJ Int 50:768–770CrossRefGoogle Scholar
  73. 73.
    Diao J, Xie B, Wang YH, Guo X (2012) Recovery of phosphorus from dephosphorization slag produced by duplex high phosphorus hot metal refining. ISIJ Int 52:955–959CrossRefGoogle Scholar
  74. 74.
    Wang Z, Sun Y, Seetharaman S, Zhang M, Zhang Z (2017) Investigation on viscosity and nonisothermal crystallization behavior of P-bearing steelmaking slags with varying TiO2 content. Metall Mater Trans B 48:527–537CrossRefGoogle Scholar
  75. 75.
    Wang Z, Sun Y, Seetharaman S, Zhang M, Guo M, Zhang Z (2015) Selective crystallization behavior of CaO–SiO2–Al2O3–MgO–FetO–P2O5 steelmaking slags modified through P2O5 and Al2O3. Metall Mater Trans B 46:2246–2254CrossRefGoogle Scholar
  76. 76.
    Xie S, Wang W (2016) Isothermal crystallization study of (2CaO·SiO2–3CaO·P2O5) solid solution in the 45 mass% CaO–30 mass% SiO2–20 mass% FeOt−5 mass% P2O5 system at 1623 K. Steel Res Int 86:1622–1627CrossRefGoogle Scholar
  77. 77.
    Xie S, Wang W (2016) Crystallization kinetics study of the (2CaO·SiO2-3CaO·P2O5) solid solution in the multiphase dephosphorization flux. Steel Res Int 87:376–385CrossRefGoogle Scholar
  78. 78.
    Samanta S, Goswami MC, Baidya TK, Mukherjee S, Dey R (2013) Mineralogy and carbothermal reduction behavior of vanadium-bearing titaniferous magnetite ore in Eastern India. Int J Min Met Mater 20:917–924CrossRefGoogle Scholar
  79. 79.
    Li LS, Wu XR, Yu L, Dong YC (2008) Effect of TiO2 on crystallization of V concentrating phase in V bearing steelmaking slag. Ironmak Steelmak 35:367–370CrossRefGoogle Scholar
  80. 80.
    Wu X, Li L, Dong Y (2011) Enrichment and crystallization of vanadium in factory steel slag. Metallurgist 55:401–409CrossRefGoogle Scholar
  81. 81.
    Dong Y, Wu X, Li L (2005) Precipitation and growth of V-concentrating phase in synthetic V-bearing steelmaking slag. ISIJ Int 45:1238–1242CrossRefGoogle Scholar
  82. 82.
    Li L, Wu L, Su Y, Yu L, Wu X, Dong Y (2008) Influence of Al2O3 on vanadium concentration in V-bearing steelmaking slag. Acta Metall Sin 44:603–608Google Scholar
  83. 83.
    Wu X, Li L, Dong Y (2007) Influence of P2O5 on crystallization of V-concentrating phase in V-bearing steelmaking slag. Ironmak Steelmak 35:367–370Google Scholar
  84. 84.
    Wu XR (2005) Experimental crystallization of synthetic V-bearing steelmaking slag with Al2O3 doped. J Wuhan Univ Technol 20:63–66CrossRefGoogle Scholar
  85. 85.
    Shen H, Forssberg E (2003) An overview of recovery of metals from slags. Waste Manag 23:933–949CrossRefGoogle Scholar
  86. 86.
    Lopez FA, Lopez-Delgado A, Belcazar N (1997) Physico-chemical and mechanical properties of EAF and AOD slags. Associazione Italiana di Metallurgia (Italy) 53:417–426Google Scholar
  87. 87.
    Zhou Y, Fang S, Dong Y, Liu H (2010) Role of SiO2 in the steel slags by modifying. J Chin Rare Earth Soc 28:537–540Google Scholar
  88. 88.
    Peng B, Yue C, Huang S, Zhang M, Guo M, Hu T (2015) CO2 modification and thermodynamic property of hot steel slag. Environ Eng 33:100–102Google Scholar
  89. 89.
    Yin X, Zhang C, Wang G, Yang J, Cai Y, Zhao C (2018) Free CaO stabilization by mixing of BF slag and BOF slag in molten state. Ironmak Steelmak 6:1–9Google Scholar
  90. 90.
    Gautier M, Poirier J, Bodénan F, Franceschini G, Veron E (2013) Basic oxygen furnace (BOF) slag cooling: laboratory characteristics and prediction calculations. Int J Miner Process 123:94–101CrossRefGoogle Scholar
  91. 91.
    Liu C, Guo M, Pandelaers L, Blanpain B, Huang S (2016) Stabilization of free lime in BOF slag by melting and solidification in air. Metall Mater Trans B 47:1–4Google Scholar
  92. 92.
    Gao J, Zhong Y, Guo L, Guo Z (2016) Separation of iron phase and P-bearing slag phase from gaseous-reduced, high-phosphorous oolitic iron ore at 1473 K (1200 & #xB0;C) by super gravity. Metall Mater Trans B 47:1080–1092CrossRefGoogle Scholar
  93. 93.
    Gao JT, Guo L, Zhong YW, Ren HR, Guo ZC (2016) Removal of phosphorus-rich phase from high-phosphorous iron ore by melt separation at 1573 K in a super-gravity field. Int J Min Met Mater 23:743–750CrossRefGoogle Scholar
  94. 94.
    Li C, Gao J, Guo Z (2016) Isothermal enrichment of P-concentrating phase from CaO–SiO2–FeO–MgO–P2O5 melt with super gravity. ISIJ Int 56:759–764CrossRefGoogle Scholar
  95. 95.
    Li C, Gao J, Guo Z (2016) Separation of phosphorus- and iron-enriched phase from CaO–SiO2–FeO–MgO–P2O5 melt with super gravity. Metall Mater Trans B 47:1516–1519CrossRefGoogle Scholar
  96. 96.
    Li C, Gao J, Wang Z, Ren H, Guo Z (2017) Separation of Fe-bearing and P-bearing phase from the steelmaking slag by super gravity. ISIJ Int 57:767–769CrossRefGoogle Scholar
  97. 97.
    Li C, Gao JT, Wang FQ, Guo ZC (2016) Enriching Fe-bearing and P-bearing phases from steelmaking slag melt by super gravity. Ironmak Steelmak 45:44–49CrossRefGoogle Scholar
  98. 98.
    Miki T, Kaneko S (2015) Separation of FeO and P2O5 from steelmaking slag utilizing capillary action. ISIJ Int 55:142–148CrossRefGoogle Scholar
  99. 99.
    Du CM, Gao X, Kim SJ, Ueda S, Kitamura SY (2016) Effects of acid and Na2SiO3 modification on the dissolution behavior of 2CaO·SiO2–3CaO·P2O5 solid solution in aqueous solutions. ISIJ Int 56:1436–1444CrossRefGoogle Scholar
  100. 100.
    Du CM, Gao X, Ueda S, Kitamura SY (2017) Effect of Na2O addition on phosphorus dissolution from steelmaking slag with high P2O5 content. J Sustain Metall 3:1–12CrossRefGoogle Scholar
  101. 101.
    Du CM, Gao X, Ueda S, Kitamura SY (2017) Effects of cooling rate and acid on extracting soluble phosphorus from slag with high P2O5 content by selective leaching. ISIJ Int 57:487–496CrossRefGoogle Scholar
  102. 102.
    Du C, Gao X, Ueda S, Kitamura S (2018) Recovery of phosphorus from modified steelmaking slag with high P2O5 content via leaching and precipitation. ISIJ Int 58:833–841CrossRefGoogle Scholar
  103. 103.
    Du CM, Gao X, Ueda S, Kitamura SY (2018) Distribution of P2O5 and Na2O between solid solution and liquid phase in the CaO–SiO2–Fe2O3–P2O5–Na2O slag system with high P2O5 content. Metall Mater Trans B 49:181–189CrossRefGoogle Scholar
  104. 104.
    Du C, Gao X, Ueda S, Kitamura S (2018) Optimum conditions for phosphorus recovery from steelmaking slag with high P2O5 content by selective leaching. ISIJ Int 58:860–868CrossRefGoogle Scholar
  105. 105.
    Numata M, Maruoka N, Kim SJ, Kitamura SY (2014) Fundamental experiment to extract phosphorous selectively from steelmaking slag by leaching. ISIJ Int 54:1983–1990CrossRefGoogle Scholar
  106. 106.
    Deng Q, Wang Q, Huang Q, Wang H (2010) Analysis on the approaches of utilization for steel slag with the analytic hierarchy process. Met Mine 1:170–174Google Scholar
  107. 107.
    Ma J (2016) Injection of flux into the blast furnace via tuyeres for optimizing slag formation. ISIJ Int 39:697–704CrossRefGoogle Scholar
  108. 108.
    Kumar S, Bandopadhyay A, Rajinikanth V, Alex TC, Kumar R (2004) Improved processing of blended slag cement through mechanical activation. J Mater Sci 39:3449–3452CrossRefGoogle Scholar
  109. 109.
    Barnett SJ, Soutsos MN, Bungey JH, Millard SG (2004) Fast-track concrete construction using cement replacement materials. In: Proceedings of the eighth CANMET/ACI international conference on fly ash, silica fume, slag, and natural Pozzolans in concrete, ACI SP-221, vol 221. American Concrete Institute, Farmington Hills, pp 135–151Google Scholar
  110. 110.
    Soutsos MN, Barnett SJ, Bungey JH, Millard SG (2005) Fast track construction with high strength concrete mixes containing ground granulated blast furnace slag. In: International symposium on the utilization of high strength/high-performance concrete, vol 228, pp 255–270Google Scholar
  111. 111.
    Kumar S, Kumar R, Bandopadhyay A, Alex TC, Kumar BR, Das SK, Mehrotra SP (2008) Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of portland slag cement. Cem Concr Compos 30:679–685CrossRefGoogle Scholar
  112. 112.
    Wang HB, Cheng XL, Sun XY, Qiang CD (2009) Study on preparation of sintering slag brick using blast furnace slag containing titanium. Multipurp Util Miner Resour 1:36–39Google Scholar
  113. 113.
    Jiao H, Tian D, Wang S, Zhu J, Jiao S (2017) Direct preparation of titanium alloys from Ti-bearing blast furnace Slag. J Electrochem Soc 164:511–516CrossRefGoogle Scholar
  114. 114.
    Li Z, Zhou ZH, Liu FT, Li Y, Shan LF, Cheng X (2009) Research on the hydrating mechanism of clinker-poor steel slag cement. J Wuhan Univ Technol 31:139–143Google Scholar
  115. 115.
    Yi H, Xu G, Cheng H, Wang J, Wan Y, Chen H (2012) An overview of utilization of steel slag. Procedia Environ Sci 16:791–801CrossRefGoogle Scholar
  116. 116.
    Zhao D, Zhang Z, Liu L, Wang X (2015) Investigation on slag fiber characteristics: mechanical property and anti-corrosion performance. Ceram Int 41:5677–5687CrossRefGoogle Scholar
  117. 117.
    Alves JO, Espinosa DCR, Tenório JAS (2015) Recovery of steelmaking slag and granite waste in the production of rock wool. J Mater Res 18:204–211CrossRefGoogle Scholar
  118. 118.
    Matsuura H, Hu X, Tsukihashi F (2012) Improvement of function and utilization of steelmaking slag. In: Ninth international conference on molten slags, fluxes and saltsGoogle Scholar
  119. 119.
    Dippenaar R (2005) Industrial uses of slag: the use and re-use of iron and steelmaking slags. Ironmak Steelmak 32:35–46CrossRefGoogle Scholar
  120. 120.
    Brämming M, Wikström JO (2010) A blast furnace view on slags. Scand J Metall 31:88–99CrossRefGoogle Scholar
  121. 121.
    Piatak NM (2018) Environmental characteristics and utilization potential of metallurgical slag. Environ Geochem 100:100. CrossRefGoogle Scholar
  122. 122.
    Chou W, Tew K, Fang L (2002) Long-term monitoring of the demersal fish community in a steel-slag disposal area in the coastal waters of Kaohsiung, Taiwan. ICES J Mar Sci 59:238–242CrossRefGoogle Scholar
  123. 123.
    Miyata Y, Sato Y, Shimizu S, Oyamada K (2009) Environment improvement in the sea bottom by steelmaking slag. JFE Technical Report No. 13, pp 41–45Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringYonsei UniversitySeoulKorea

Personalised recommendations