Advertisement

Journal of Sustainable Metallurgy

, Volume 4, Issue 4, pp 485–492 | Cite as

Evaluation of Flocculation and Settling Behavior of Leach Residues: Contribution of Principal Component Analysis

  • Bienvenu Ilunga Mbuya
  • Méschac-Bill Kime
  • Patrick Tshibanda Ntakamutshi
  • Tony Rukan Mwilen
  • Symphorien Tshuyi Muhungu
  • Edouard Mutamba Mwema
  • Jean Marie Ntumba Kanda
  • Arthur Tshamala Kaniki
Research Article
  • 38 Downloads

Abstract

Chemical treatment is the best technology for the purification of copper–cobalt aqueous solutions because of its ability to remove suspended solids detrimental to downstream processes. However, the lack of optimization and adaptation of this method for the purification of the solutions obtained from the leaching of copper–cobalt ores with high mineralogical variability leads to significant fluctuations in the efficiency of the purification. This work investigated the batch settling–flocculation of fine solid particles (Al2O3 and SiO2) from copper–cobalt aqueous solutions using different flocculants (Brontë 234, APAM D8625-10, and CPAM D9640). The experimental variables comprised flocculant type, flocculant dosage, solids concentration, settling area, settling rate, % Al2O3, % SiO2, and particle size. The experimental 12 × 7 matrix was analyzed by principal component analysis, and the resulting principal components (PCs) and Varimax rotated PCs were analyzed using correlation circle plots. The most important settling variables proved to be the solids concentration, together with % Al2O3 and particle size. High settling rate (0.42 m/h) and low settling surface (0.40 m2/t/h) were obtained at the flocculant dosage of 20 g/t. In addition, good settling performance was obtained with anionic flocculants (APAM D8625-10 and Bronté 234) rather than the cationic flocculant considered (CPAM D9640).

Keywords

Multivariate analysis Principal component analysis Settling Flocculation Cu–Co ores Leaching Concentrates 

References

  1. 1.
    Hitzman MW, Kirkham R, Broughton D, Thorson J, Selley D (2005). The sediment-hosted stratiform copper ore system. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic geology 100th anniversary volume, pp 609–642Google Scholar
  2. 2.
    Selley D, Broughton D, Scott R, Hitzman M, Bull SW, Large RR, McGoldrick PJ, Croaker M, Pollington N, Barra F (2005) A new look at the geology of the Zambian copperbelt. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic geology 100th anniversary volume, pp 965–1000Google Scholar
  3. 3.
    Cailteux J, Kampunzu AB, Lerouge C, Kaputo AK, Milesi JP (2005) Genesis of sediment-hosted stratiform copper-cobalt deposits, central African copperbelt. J Afr Earth Sci 42:138–154Google Scholar
  4. 4.
    Fay I, Barton MD (2011) Alteration and ore distribution in the proterozoic mines series, Tenke-Fungurume Cu–Co district, Democratic Republic of Congo. Miner Depos 47:501–519CrossRefGoogle Scholar
  5. 5.
    Kang L-S, Cleasby JL (1995) Temperature effects on flocculation kinetics using Fe(III) coagulant. J Environ Eng 121(12):893CrossRefGoogle Scholar
  6. 6.
    Ouddane B, Fischer J-C, Wartel M (1992) Evaluation statistique de la répartition des métaux en traces Cd, Pb, Cu, Zn et Mn dans la seine et son estuaire. Oceanol Acta 15(4):347–354Google Scholar
  7. 7.
    Baskali N, Fantozzi C, Barna L, Lanteri P, Brauer C (2004) Evaluation du comportement à la lixiviation de déchets stabilisés/solidifiés-apport des méthodes d’analyses multivariées. Déchets—Revue Francophone D’écologie Industrielle-N° 36—4e trimestre (in French) Google Scholar
  8. 8.
    Nakamura K, Kuwatani T, Kawabe Y, Komai T (2016) Extraction of heavy metals characteristics of the 2011 Tohoku tsunami deposits using multiple classification analysis. Chemosphere 144:1241–1248CrossRefGoogle Scholar
  9. 9.
    Sabiha H (2014) Eléments d’aide à la décision dans l’analyse territoriale—application de l’ACP sur la région Nord-Ouest. Revue ElWahat Rech Etudes 7(2):118–134Google Scholar
  10. 10.
    Abdi H, Williams LJ (2010) Principal component analysis. Interdiscipl Rev 2:433–459.  https://doi.org/10.1002/wics.101 CrossRefGoogle Scholar
  11. 11.
    Dihang MD (2007) Mécanismes de coagulation et de floculation de suspensions d’argiles diluées rencontrées en traitement des eaux. Thèse de doctorat, Université Paul Sabatier, France (in French) Google Scholar
  12. 12.
    Owen AT, Fawell PD, Swift JD, Farrow JB (2002) The impact of polyacrylamide flocculant solution age on flocculation performance. Int J Miner Process 67:123–144CrossRefGoogle Scholar
  13. 13.
    McGuire MJ, Addai-Mensah J, Bremmell KE (2006) The effect of polymer structure type, pH and shear on the interfacial chemistry, rheology and dewaterability of model iron oxide dispersions. Colloids Surf A 275:153–160CrossRefGoogle Scholar
  14. 14.
    Sincero AP (2002) Correction to the method of Talmage and Fitch. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.554.3749&rep=rep1&type=pdf
  15. 15.
    Gupta A, Yan DS (2006) Minerals processing design and operation, Perth, Australia. Chapter 13—Solid–liquid separation, ISBN: 978-0-444-51636-7Google Scholar
  16. 16.
    Ouddane B, Fischer J-C, Wartel M (1992) Evaluation statistique de la répartition des métaux en traces Cd, Pb, Cu, Zn et Mn dans la seine et son estuaire. Oceanol Acta 15(4):347–354Google Scholar
  17. 17.
    Cliff N (1988) The eigenvalues greater than one rule and the reliability components. Am Psychol Assoc Univ South Calif 103(2):276–279Google Scholar
  18. 18.
    Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecol Soc Am 74(8):2204–2214Google Scholar
  19. 19.
    Peloquin G (2003) Modélisation mathématique de la décantation de boue rouge, Thèse, UQAC, Canada, p 258Google Scholar
  20. 20.
    Mpofu P, Addai-Mensah J, Ralston J (2003) Investigation of the effect of polymer structure type on flocculation, rheology and dewatering behaviour of kaolinite dispersions. Int J Miner Process 71:247–268CrossRefGoogle Scholar
  21. 21.
    Bolto B, Gregory J (2007) Organic polyelectrolytes in water treatment. Water Res 41:2301–2324.  https://doi.org/10.1016/j.watres.2007.03.012 CrossRefGoogle Scholar
  22. 22.
    Mbuya BI, Kime MB, Kabeya CM, Kaniki AT (2017) Clarification and solvent extraction studies of a high talc containing copper aqueous solution. J Mater Res Technol.  https://doi.org/10.1016/j.jmrt.2017.05.014 CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Bienvenu Ilunga Mbuya
    • 1
  • Méschac-Bill Kime
    • 2
    • 3
  • Patrick Tshibanda Ntakamutshi
    • 4
    • 5
  • Tony Rukan Mwilen
    • 4
  • Symphorien Tshuyi Muhungu
    • 1
  • Edouard Mutamba Mwema
    • 4
    • 5
  • Jean Marie Ntumba Kanda
    • 4
  • Arthur Tshamala Kaniki
    • 5
  1. 1.Faculty of EngineeringUniversity of LikasiLikasiDemocratic Republic of the Congo
  2. 2.Department of MetallurgyUniversity of Johannesburg, Doornfontein CampusJohannesburgSouth Africa
  3. 3.EngSkills Consulting LLCLaytonUSA
  4. 4.Faculty of EngineeringUniversity of LubumbashiLubumbashiDemocratic Republic of the Congo
  5. 5.Gécamines Metallurgical Research CentreLikasiDemocratic Republic of the Congo

Personalised recommendations