Journal of Sustainable Metallurgy

, Volume 3, Issue 4, pp 772–781 | Cite as

Slag Chemistry of High-Alumina Iron Silicate Slags at 1300 °C in WEEE Smelting

  • Lassi Klemettinen
  • Katri Avarmaa
  • Pekka TaskinenEmail author
Research Article


New fluxing chemistries are appearing in secondary copper smelters, where the use of raw materials from various waste electric and electronic equipment sources as significant copper feedstocks associate greatly increased fractions of alumina in the slag, compared with the conventional raw materials utilized in primary copper smelting processes. In extreme cases, alumina concentrations close to the saturation level may be reached, and the practical alumina loads to the slag may be above 10 wt% (Al2O3). This affects the physical properties of the molten slag and enhances stabilities of the solid primary phases, thus having an impact on its saturation boundaries and solubilities. We examined fundamental phase-equilibrium data of high-alumina slags by an equilibration-quenching method in equilibrium with metallic copper at 1300 °C, in the oxygen pressure range of P(O2) = 10−10–10−5 atm. We measured the chemical compositions of the molten slag and copper, and solid alumina-iron spinel directly by the Electron X-ray Microprobe technique and provide novel phase-equilibrium data for the poorly known intermediate oxygen pressure range from air to iron saturation.


Copper Pyrometallurgy Phase equilibria Thermodynamics Circular economy 



CLIC Innovation Oy and Tekes supported this research through ARVI programme (Tekes Funding  Decision #379/14). The authors are indebted to Mr. Lassi Pakkanen, the Geological Survey of Finland, for his kind assistance in the EPMA measurements.

Supplementary material

40831_2017_141_MOESM1_ESM.docx (24 kb)
Supplementary material 1 (DOCX 23 kb)


  1. 1.
    Jung I-H, Decterov S, Pelton A (2004) A thermodynamic model for deoxidation equilibria in steel. Metall Mater Trans B 35(3):493–507CrossRefGoogle Scholar
  2. 2.
    Schairer J, Yagi K (1952) The system FeO–Al2O3–SiO2. Am J Sci Bowen 471:512Google Scholar
  3. 3.
    Muan A (1957) Phase equilibria at liquidus temperatures in the system iron oxide-Al2O3–SiO2 in air atmosphere. J Am Ceram Soc 40(4):121–133CrossRefGoogle Scholar
  4. 4.
    Muan A (1957) Phase equilibrium relationships at liquidus temperatures in the system FeO–Fe2O3–Al2O3–SiO2. J Am Ceram Soc 40(12):420–431CrossRefGoogle Scholar
  5. 5.
    Bagrova T, Vaskevich A, Zaitsev V, Kukoev V (1986) The equilibrium pressure of oxygen and activities of components in the Fe–Al2O3–SiO2 system. Izv Akad Nauk SSSR Met 4:31–36Google Scholar
  6. 6.
    Zhao B, Jak E, Hayes P (1999) The effect of Al2O3 on liquidus temperatures of fayalite slags. Metall Mater Trans B 30(4):597–605CrossRefGoogle Scholar
  7. 7.
    Zhao B, Hayes P, Jak E (2013) Effects of CaO, Al2O3 and MgO on liquidus temperatures of copper smelting and converting slags under controlled oxygen partial pressures. J Min Metall Sect 49(2):153–159CrossRefGoogle Scholar
  8. 8.
    Nagamori M, Mackey P, Tarassoff P (1975) Copper solubility in FeO–Fe2O3–SiO2–Al2O3 slag and distribution equilibria of Pb, Bi, Sb and As between slag and metallic copper. Metall Trans B 6(3):295–301CrossRefGoogle Scholar
  9. 9.
    Nagamori M, Mackey P (1977) Distribution equilibria of Sn, Se and Te between FeO–Fe2O3–SiO2–Al2O3–CuO0.5 slag and metallic copper. Metall Trans B 8(1):39–46CrossRefGoogle Scholar
  10. 10.
    Altman R (1978) Influence of Al2O3 and CaO on solubility of copper in silica-saturated iron silicate slags. Trans Inst Min Metall Sect C 87(1):C23–C28Google Scholar
  11. 11.
    Elliott B, See J, Rankin W (1978) Effect of slag composition on copper losses to silica-saturated iron silicate slags. Trans Inst Min Metall Sect C 87(3):C204–C211Google Scholar
  12. 12.
    Reddy R, Acholonu C (1984) Activity coefficient of CuO0.5 in alumina saturated iron silicate slags. Metall Trans B 15(3):345–349CrossRefGoogle Scholar
  13. 13.
    Reddy R, Acholonu C (1984) Distribution of nickel between copper-nickel and alumina saturated iron silicate slags. Metall Trans B 15(1):33–37CrossRefGoogle Scholar
  14. 14.
    Derin B, Yüsel O (2002) Distribution of cobalt between Co–Cu alloy and Al2O3–FeO–Fe2O3–SiO2 slags. Scand J Metall 31(1):12–19CrossRefGoogle Scholar
  15. 15.
    Matsuzaki K, Ishikawa T, Tsukada T, Ito K (2000) Distribution equilibria of Pb and Cu between CaO–SiO2–Al2O3 melts and liquid copper. Metall Mater Trans B 31(6):1261–1266CrossRefGoogle Scholar
  16. 16.
    Nestler H (1967) Beitrag zum Aufbau des systems Kupfer–Nickel–Sauerstoff und dessen Bedeutung für das Verhalten des Nickels bei der trockenen Kupferraffination. Freib Forsch B119:75–114Google Scholar
  17. 17.
    Heo J, Park S, Park J (2012) Effect of slag composition on the distribution behavior of Pb between FetO–SiO2 (–CaO, Al2O3) slag and molten copper. Metall Mater Trans B 43(5):1098–1105CrossRefGoogle Scholar
  18. 18.
    Kim H, Sohn H (1998) Effects of CaO, Al2O3, and MgO additions on the copper solubility, ferric/ferrous ratio, and minor-element behavior of iron silicate slags. Metall Mater Trans B 29(3):583–590CrossRefGoogle Scholar
  19. 19.
    Henao HM, Nexhip C, George-Kennedy DP, Hayes PC, Jak E (2010) Investigation of liquidus temperatures and phase equilibria of copper smelting slags in the FeO–Fe2O3–SiO2–CaO–MgO–Al2O3 system at PO2 10−8 atm. Metall Mater Trans B 41(4):767–779CrossRefGoogle Scholar
  20. 20.
    Henao HM, Pizarro C, Font J, Moyano A, Hayes PC, Jak E (2010) Phase equilibria of ‘‘Cu2O’’–‘‘FeO’’–CaO–MgO–Al2O3 slags at PO2 of 10−8.5 atm in equilibrium with metallic copper for a copper slag cleaning production. Metall Mater Trans B 41(6):1186–1193CrossRefGoogle Scholar
  21. 21.
    Jak E, Degterov S, Hayes P, Pelton A (1998) Thermodynamic modelling of the system Al2O3–SiO2–CaO–FeO–Fe2O3 to predict the flux requirements for coal ash slags. Fuel 77(1/2):77–84CrossRefGoogle Scholar
  22. 22.
    Gisby J, Dinsdale A, Taskinen P (2007) Predictive thermochemistry of oxide and sulfide systems. In: Proceedings EMC 2007 (Vol. 4), Düsseldorf, June 11–14, 2007, DGBM, Clausthal-Zellerfeld, pp 1721–1736Google Scholar
  23. 23.
    Jak E, Zhao B, Hayes P (2008) Phase equilibria in the system FeO–Fe2O3–Al2O3–CaO–SiO2 with applications to non-ferrous smelting slags. Miner Process Extract Metall 117(3):147–152CrossRefGoogle Scholar
  24. 24.
    Chen C, Zhang L, Jahanshahi S (2013) Application of MPE model to direct-to-blister flash smelting and deportment of minor elements. In: Copper 2013 Vol III (Book 2), IIMCh, Santiago (Chile), pp 289–304Google Scholar
  25. 25.
    Hidayat T, Jak E (2013) A thermodynamic optimization of the “Cu2O”-containing slag system and its application in high-temperature copper making processes. In: Copper 2013 Vol III (Book 1), IIMCh, Santiago (Chile), pp 489–501Google Scholar
  26. 26.
    Tsymbulov L, Kongoli F, McBow I, Pigarev S (2014) Composition and characteristics of slags from continuous converting of copper matte and concentrate. Miner Process Extract Metall 123(1):10–20CrossRefGoogle Scholar
  27. 27.
    Mostaghel S, Matsushita T, Samuelsson C, Björkman B, Seetharaman S (2013) Influence of alumina on physical properties of an industrial zinc-copper smelting slag. Part 3—melting behaviour. Miner Process Extract Metall 122(1):56–62CrossRefGoogle Scholar
  28. 28.
    Ghodrat M, Akbar Rhamdhani M, Brooks G, Masood S, Corder G (2016) Techno-economic analysis of electronic waste processing through black copper smelting route. J Clean Prod 126(1):178–190CrossRefGoogle Scholar
  29. 29.
    HSC (2006) HSC chemistry for windows (Vers. 6.07), Outokumpu Research Oy (Pori, Finland).
  30. 30.
    Hamuyuni J, Klemettinen L, Taskinen P (2016) Experimental phase equilibrium data of the system Cu-O-CaO-Al2O3 at copper saturation. Calphad 55(2):199–207CrossRefGoogle Scholar
  31. 31.
    Jak E, Hayes P (2004) Phased equilibria determination in complex slag systems. In: VII international conference molten slags, fluxes and salts (Symp. Series S36). The South African IMM, Johannesburg, pp 85–103Google Scholar
  32. 32.
    Pouchou JL, Pichoir F (1986) Basic expression of “PAP” computation for quantitative EPMA. In: 11th international congress on X-ray optics and microanalysis (ICXOM). Ontario, Canada. Edit. by J. D. Brown & R. H. Packwood, pp 249–256Google Scholar
  33. 33.
    Lavrent’ev YG, Korolyuk VN, Usova LV (2004) Second generation of correction methods in electron probe X-ray microanalysis: approximation models for emission depth distribution functions. J Anal Chem 59(7):600–616CrossRefGoogle Scholar
  34. 34.
    Klemettinen L, Avarmaa K, Taskinen P (2017) Trace element distributions in black-copper smelting. In: Proceedings Quo vadis recycling (Ed. D. Oráč), June 6–9, Novy Smokovec, Slovakia, pp 162–175Google Scholar
  35. 35.
    Fleischer G, Kammel R, Lembke U (1978) Verarbeitung von flüssigem Kupferlegierungsmaterial im Altmetallkonverter. Metall 32(2):129–134Google Scholar
  36. 36.
    Zajaczkowski A, Botor J, Cernecki J (2004) Thermodynamics of copper and lead in alumina saturated flash smelting slag. Can Metall Q 43(3):417–430CrossRefGoogle Scholar
  37. 37.
    Zhang S, Rezaie H, Sarpoolaky H, Lee W (2000) Alumina dissolution into silicate slag. J Am Ceram Soc 83(4):897–903CrossRefGoogle Scholar
  38. 38.
    Jak E, Hayes P, Lee H-G (1995) Improved methodologies for the determination of high-temperature phase equilibria. Metals Mater 1(1):1–8Google Scholar
  39. 39.
    IUPAC (2014) Compendium of chemical terminology. Gold Book. International Union of Pure and Applied Chemistry.
  40. 40.
    Davies R, Dinsdale A, Gisby J, Robinson J, Martin S (2002) MTDATA-thermodynamic and phase equilibrium software from the national physical laboratory. Calphad 26(2):229–271CrossRefGoogle Scholar
  41. 41.
    Gisby J, Taskinen P, Pihlasalo J, Li Z, Tyrer M, Pearce J, Avarmaa K, Björklund P, Davies H, Korpi M, Martin S, Pesonen L, Robinson J (2017) MTDATA and the prediction of phase equilibria in oxide systems: 30 years of industrial collaboration. Metall Mater Trans B 48(1):91–98CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Thermodynamics and Modelling Research Group, School of Chemical EngineeringAalto UniversityAaltoFinland

Personalised recommendations