Journal of Sustainable Metallurgy

, Volume 3, Issue 4, pp 753–771 | Cite as

Developing a Life Cycle Inventory for Rare Earth Oxides from Ion-Adsorption Deposits: Key Impacts and Further Research Needs

  • Rita SchulzeEmail author
  • Francoise Lartigue-Peyrou
  • Jiawen Ding
  • Liselotte Schebek
  • Matthias Buchert
Research Article


Rare earth production from ion-adsorption deposits constitutes an important rare earth production route, and the most important production route for heavy rare earths such as dysprosium and terbium. The demand for dysprosium has experienced substantial growth in recent years, mainly due to its use in neodymium–iron–boron (Nd–Fe–B) magnets, the demand for which is increasing largely due to their use in efficient motor applications. Hence, the analysis of environmental impacts associated with rare earth mining and processing is gaining importance. In this study, a life cycle inventory for rare earth production from ion-adsorption deposits was compiled through a detailed analysis of the literature and with help from industry experts. A detailed review of the literature on environmental impacts associated with the mining process was also conducted, and impacts not covered by the current impact assessment methods are discussed. Despite the detailed study, data uncertainties remain. Therefore, recommendations for further research are given, including further investigations into the fate of emissions from in situ leaching of rare earths in the proximity of the mining site, and development of the methods used to assess resource extraction.


Life cycle assessment In situ leaching Dysprosium Rare earth elements Ion-adsorption deposits 



The research leading to results of this study has received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. 607411 (MC-ITN EREAN: European Rare Earth Magnet Recycling Network). This publication reflects only the authors’ views, exempting the Community from any liability. Project website: The authors would like to thank Solvay for enabling the expert interviews and for their help with the compilation of this dataset; Winfried Bulach, Bo Weidema, Lauran van Oers, Mikhail Tyumentsev, and members of the EREAN Steering Group, and two anonymous reviewers for valuable comments.

Supplementary material

40831_2017_139_MOESM1_ESM.docx (71 kb)
Supplementary material 1 (DOCX 70 kb)


  1. 1.
    Waide P, Brunner CU (2011) Energy-efficiency policy opportunities for electric motor-driven systems: OECD/IEA. Accessed 29 July 2015
  2. 2.
    Buchert M, Manhart A, Sutter J (2013) Untersuchung zu Seltenen Erden: Permanent magnete im industriellen Einsatz in Baden-Württemberg: Öko-Institut e. V., FreiburgGoogle Scholar
  3. 3.
    Schüler D, Buchert M, Liu R et al (2011) Study on rare earths & their recycling: Final Report for the Greens/EFA Group in the European Parliament, DarmstadtGoogle Scholar
  4. 4.
    Althaus H-J, Chudacoff M, Hischier R et al (2007) Life cycle inventories of chemicals: Ecoinvent Report No 8. Data V2.0, DübendorfGoogle Scholar
  5. 5.
    Sprecher B, Xiao Y, Walton A et al (2014) Life cycle inventory of the production of rare earths and the subsequent production of NdFeB rare earth permanent magnets. Environ Sci Technol 48:3951–3958. doi: 10.1021/es404596q CrossRefGoogle Scholar
  6. 6.
    Koltun P, Tharumarajah A (2014) Life cycle impact of rare earth elements. ISRN Metall 1–2:1–10. doi: 10.1155/2014/907536 CrossRefGoogle Scholar
  7. 7.
    Browning C, Northey S, Haque N et al (2016) Life cycle assessment of rare earth production from monazite. REWAS 2016: towards materials resource sustainability. The Minerals, Metals & Materials Society, Warrendale; Wiley, Hoboken. doi: 10.1002/9781119275039.ch12 CrossRefGoogle Scholar
  8. 8.
    Graf R (2012) Ökobilanzielle Betrachtung von Seltenen Erden: Diplomarbeit. Universität Stuttgart, StuttgartGoogle Scholar
  9. 9.
    Zaimes GG, Hubler BJ, Wang S et al (2015) Environmental life cycle perspective on rare earth oxide production. Sustain Chem Eng 3:237–244. doi: 10.1021/sc500573b CrossRefGoogle Scholar
  10. 10.
    Peiró LT, Méndez GV (2013) Material and energy requirement for rare earth production. JOM 65(10):1327–1340. doi: 10.1007/s11837-013-0719-8 CrossRefGoogle Scholar
  11. 11.
    Yang XJ, Lin A, Li X-L et al (2013) China’s ion-adsorption rare earth resources, mining consequences and preservation. Environ Dev 8:131–136. doi: 10.1016/j.envdev.2013.03.006 CrossRefGoogle Scholar
  12. 12.
    Vahidi E, Navarro J, Zhao F (2016) An initial life cycle assessment of rare earth oxides production from ion-adsorption clays. Res Conserv Recycl 113:1–11. doi: 10.1016/j.resconrec.2016.05.006 CrossRefGoogle Scholar
  13. 13.
    DIN (2006) Environmental management—Life Cycle assessment—Requirements and guidelines (ISO 14044:2006) [Umweltmanagement—Ökobilanz—Anforderungen und Anleitungen (ISO 14044:2006)]; German and English version EN ISO 14044:2006Google Scholar
  14. 14.
    DIN EN ISO (2006) Environmental management—Life cycle assessment—Principles and Framework (ISO 14040:2006) [Umweltmanagement—Ökobilanz—Grundsätze und Rahmenbedingungen (ISO 14040:2006)]; German and English version EN ISO 14040:2006Google Scholar
  15. 15.
    Gupta CK, Krishnamurthy N (2005) Extractive metallurgy of rare earths. CRC Press, Boca RatonGoogle Scholar
  16. 16.
    Voßenkaul D, Stoltz NB, Meyer FM et al (2015) Extraction of rare earth elements from non-Chinese ion adsorption clays: Proceedings of EMC 2015Google Scholar
  17. 17.
    Papangelakis V (2014) Recovery of rare earth elements from clay minerals: ERES2014: 1st European Rare Earth Resources Conference. Milos, 04–07 Sept 2014Google Scholar
  18. 18.
    Tian J, Tang X, Yin J (2013) Enhanced leachability of a lean weathered crust elution-deposited rare-earth ore: effects on Sesbania gum filter aid reagent. Metall Mater Trans 44(5):1070. doi: 10.1007/s11663-013-9871-3 CrossRefGoogle Scholar
  19. 19.
    Krishnamurthy N, Gupta CK (2016) Extractive metallurgy of rare earths, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  20. 20.
    Haschke M (2016) In-situ recovery of critical technology elements: “SYMPHOS 2015”, 3rd International Symposium on Innovation and Technology in the Phosphate Industry. Procedia Engineering (138): 248–257CrossRefGoogle Scholar
  21. 21.
    Packey DJ (2016) The impact of unregulated ionic clay rare earth mining in China. Resour Policy 48:112–116. doi: 10.1016/j.resourpol.2016.03.003 CrossRefGoogle Scholar
  22. 22.
    Lartigue-Peyrou F (2016) Rare earth industry expert statement. Personal communication via e-mail, 6.07.2016Google Scholar
  23. 23.
    Navarro J, Zhao F (2014) Life-cycle assessment of the production of rare-earth elements for energy applications: a review. Front Energy Res. doi: 10.3389/fenrg.2014.00045 CrossRefGoogle Scholar
  24. 24.
    Yanfei X, Zongyu F, Xiaowei H et al (2016) Recovery of rare earth from the ion-adsorption type rare earths ore: II. Compd Leach Hydrometall 163:83–90. doi: 10.1016/j.hydromet.2016.03.016 CrossRefGoogle Scholar
  25. 25.
    Jun T (2011) Extraction of rare earths from the leach liquor of the weathered crust elution-deposited rare earth ore with non-precipitation. Int J Min Process 98:125–131. doi: 10.1016/j.minpro.2010.11.007 CrossRefGoogle Scholar
  26. 26.
    Chi R, Zhou Z, Xu Z et al (2003) Solution-chemistry analysis of ammonium bicarbonate consumption in rare-earth-element precipitation. Metall Mater Trans B 34(5):611–617. doi: 10.1007/s11663-003-0031-z CrossRefGoogle Scholar
  27. 27.
    Luo X-P, Zou L-P, Ma P-L et al (2015) Removing aluminum from a low-concentration lixivium of weathered crust elution-deposited rare earth ore with neutralizing hydrolysis. Rare Met. doi: 10.1007/s12598-015-0621-3 CrossRefGoogle Scholar
  28. 28.
    Packey DJ (2016) Question re. composition of ionic deposits given in paper. Personal communication via e-mail, 12.07.2016Google Scholar
  29. 29.
    Lin G, Zhang L, Yin S et al (2015) Study on the calcination experiments of rare earth carbonates using microwave heating. Green Process Synth. doi: 10.1515/gps-2015-0040 CrossRefGoogle Scholar
  30. 30.
    Calvo G, Mudd G, Valero A et al (2016) Decreasing ore grades in global metallic mining, a theoretical issue or a global reality? ECI Conference (Abstract)—life cycle assessment and other assessment tools for waste management and resource optimization, Cetraro, CalabriaCrossRefGoogle Scholar
  31. 31.
    Jun T (2013) Process optimization on leaching of a lean weathered crust elution-deposited rare earth ores. Int J Min Process 119:83–88. doi: 10.1016/j.minpro.2013.01.004 CrossRefGoogle Scholar
  32. 32.
    Yanfei X, Zongyu F, Xiaowei H et al (2015) Recovery of rare earths from weathered crust elution-deposited rare earth ore without ammonia-nitrogen pollution: I. Leaching with magnesium sulfate. Hydrometallurgy 153:58–65. doi: 10.1016/j.hydromet.2015.02.011 CrossRefGoogle Scholar
  33. 33.
    Xie F, Zhang TA, Dreisinger D et al (2014) A critical review on solvent extraction of rare earths from aqueous solutions. Min Eng 56:10–28. doi: 10.1016/j.mineng.2013.10.021 CrossRefGoogle Scholar
  34. 34.
    Leveque A (2014) Extraction and separation of rare earths. EREAN Summer School, LeuvenGoogle Scholar
  35. 35.
    Chun-Sheng L, Fu-Xiang C (2016) Green separation of rare earth resources in China: State Key Lab of Rare Earth Materials Chemistry and Applications of Peking University; Minmetals (Beijing) Research Institute of RE Co., LtdGoogle Scholar
  36. 36.
    Elwert T, Goldmann D, Schmidt F et al (2013) Hydrometallurgical recycling of sintered NdFeB magnets. World Metall 66(4):209–219Google Scholar
  37. 37.
    Sokolova TA, Alekseeva SA (2008) Adsorption of sulfate ions by soils (a review). Eurasian Soil Sci 41(2):140–148. doi: 10.1134/S106422930802004X CrossRefGoogle Scholar
  38. 38.
    EC-JRC (2010) International reference life cycle data system (ILCD) handbook—general guide for life cycle assessment—detailed guidance, 1st edn. Publications Office of the European Union, LuxembourgGoogle Scholar
  39. 39.
    Strokal M, Yang H, Zhang Y et al (2014) Increasing eutrophication in the coastal seas of China from 1970 to 2050. Mar Pollut Bull 85(1):123–140. doi: 10.1016/j.marpolbul.2014.06.011 CrossRefGoogle Scholar
  40. 40.
    Le C, Zha Y, Li Y et al (2010) Eutrophication of lake waters in China: cost, causes, and control. Environ Manag 45(4):662–668. doi: 10.1007/s00267-010-9440-3 CrossRefGoogle Scholar
  41. 41.
    Conley DJ, Paerl HW, Howarth RW et al (2009) Ecology. Controlling eutrophication: nitrogen and phosphorus. Science 323(5917):1014–1015. doi: 10.1126/science.1167755 CrossRefGoogle Scholar
  42. 42.
    Yi Q, Wang X, Wang T et al (2014) Eutrophication and nutrient limitation in the aquatic zones around Huainan coal mine subsidence areas, Anhui, China. Water Sci Technol 70(5):878–887. doi: 10.2166/wst.2014.293 CrossRefGoogle Scholar
  43. 43.
    Huo S, Ma C, Xi B et al (2013) Establishing eutrophication assessment standards for four lake regions, China. J Environ Sci 25:2014–2022CrossRefGoogle Scholar
  44. 44.
    Linarić M, Markić M, Sipos L (2013) High salinity wastewater treatment. Water Sci Technol 68(2013):1400–1405. doi: 10.2166/wst.2013.376 CrossRefGoogle Scholar
  45. 45.
    Cañedo-Argüelles M, Kefford BJ, Piscart C et al (2013) Salinisation of rivers: an urgent ecological issue. Environ Pollut 173:157–167. doi: 10.1016/j.envpol.2012.10.011 CrossRefGoogle Scholar
  46. 46.
    Humsa TZ (2015) Impact of rare earth mining and processing on soil and water environment at Chavara, Kollam, Kerala: a case study. Proc Earth Planet Sci 11:566–581. doi: 10.1016/j.proeps.2015.06.059 CrossRefGoogle Scholar
  47. 47.
    Vuori K-M (1995) Direct and indirect effects of iron on river ecosystems. Ann Zool Fenn 32:317–329Google Scholar
  48. 48.
    Tian J, Chi R-A, Yin J-Q (2010) Leaching process of rare earths from weathered crust elution-deposited rare earth ore. Trans Nonferrous Met Soc China 20:892–896. doi: 10.1016/S1003-6326(09)60232-6 CrossRefGoogle Scholar
  49. 49.
    Vahidi E, Zhao F (2016) Life cycle analysis for solvent extraction of rare earth elements from aqueous solutions. REWAS 2016: Towards materials resource sustainability. The Minerals, Metals & Materials Society, Warrendale; Wiley, Hoboken, pp 113–120Google Scholar
  50. 50.
    Schmidt G (2013) Description and critical environmental evaluation of the REE refining plant LAMP near Kuantan/Malaysia—Radiological and non-radiological environmental consequences of the plant’s operation and its wastes. Report, prepared on behalf of NGO “Save Malaysia, Stop Lynas” (SMSL), Kuantan/Malaysia.
  51. 51.
    Acero AP, Rodríguez C, Ciroth A (2017) LCIA methods Impact assessment methods in Life Cycle Assessment and their impact categories: 1.5.6.
  52. 52.
    Sutter J, Merz C (2015) Characterization factors for REE in LCIA method ADP elementary. Personal communication via e-mail, 7.1.2015Google Scholar
  53. 53.
    Walachowicz F, March A, Fiedler S et al (2014) Verbundprojekt: Recycling von Elektromotoren—MORE: Teilprojekt: Ökobilanz der Recyclingverfahren. Projekt gefördert im Rahmen des Programms “Schlüsseltechnologien für die Elektromobilität (STROM) des BMBFGoogle Scholar
  54. 54.
    van Oers L, de Koning A, Guinée J et al (2002) Abiotic resource depletion in LCA: improving characterization factors for abiotic resource depletion as recommended in the new Dutch LCA Handbook. Institute of Environmental Sciences, LeidenGoogle Scholar
  55. 55.
    Long KR, Van Gosen BS, Foley NK, Cordier D (2010) The principal rare earth elements deposits of the United States—a summary of domestic deposits and a global perspective. Department of the Interior, US Geological Survey, RestonCrossRefGoogle Scholar
  56. 56.
    Guinée J (1995) Development of a methodology for the environmental life-cycle assessment of products: with a case study on margarines. Dissertation, Promotor: Udo, de Haes H.A.Google Scholar
  57. 57.
    EC (2014) Report on critical raw materials for The EU—critical raw materials profiles: For DG Enterprise and IndustryGoogle Scholar
  58. 58.
    USGS (2016) Antimony. Statistics and Information. Accessed 29 June 2016
  59. 59.
    Adibi N (2014) Introducing a multi-criteria indicator to better evaluate impacts of rare earth materials production and consumption in life cycle assessment. J Rare Earths 32(3):288–292. doi: 10.1016/S1002-0721(14)60069-7 CrossRefGoogle Scholar
  60. 60.
    van Oers L, Guinée J (2016) The abiotic depletion potential: background, updates, and future. Resources. doi: 10.3390/resources5010016 CrossRefGoogle Scholar
  61. 61.
    USGS (2016) Clays. Statistics and Information. Accessed 29 June 2016
  62. 62.
    Palmer MA, Bernhardt ES, Schlesinger WH et al (2010) Mountaintop mining consequences: American Association for the Advancement of Science. Sciencemag 327:148–149. doi: 10.1126/science.1180543 CrossRefGoogle Scholar
  63. 63.
    van der Welle ME, Roelofs JG, Lamers LP (2008) Multi-level effects of sulphur–iron interactions in freshwater wetlands in The Netherlands. Ecol Effects Diffus Pollut 406(3):426–429. doi: 10.1016/j.scitotenv.2008.05.056 CrossRefGoogle Scholar
  64. 64.
    Mancini L, Benini L, Sala S (2016) Characterization of raw materials based on supply risk indicators for Europe. Int J Life Cycle Assess. doi: 10.1007/s11367-016-1137-2 CrossRefGoogle Scholar
  65. 65.
    Sonnemann G (2015) From a critical review to a conceptual framework for integrating the criticality of resources into Life Cycle Sustainability Assessment. J Clean Prod 94:20–34. doi: 10.1016/j.jclepro.2015.01.082 CrossRefGoogle Scholar
  66. 66.
    Graedel TE, Harper EM, Nassar NT et al (2015) Criticality of metals and metalloids. Proc Natl Acad Sci USA 112(14):4257–4262. doi: 10.1073/pnas.1500415112 CrossRefGoogle Scholar
  67. 67.
    Yan C, Jia J, Liao C et al (2006) Rare earth separation in China. Tsinghua Sci Technol 11(2):241–247. doi: 10.1016/S1007-0214(06)70183-3 CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Rita Schulze
    • 1
    • 2
    • 3
    Email author
  • Francoise Lartigue-Peyrou
    • 4
  • Jiawen Ding
    • 5
  • Liselotte Schebek
    • 2
  • Matthias Buchert
    • 1
  1. 1.Öko-Institut e.V.DarmstadtGermany
  2. 2.Technische Universität DarmstadtInstitut IWARDarmstadtGermany
  3. 3.Leiden UniversityInstitute of Environmental SciencesLeidenThe Netherlands
  4. 4.Solvay Ric Lyon, SolvaySaint-FonsFrance
  5. 5.SolvayLa RochelleFrance

Personalised recommendations