Advertisement

Journal of Sustainable Metallurgy

, Volume 3, Issue 4, pp 737–752 | Cite as

Investigation of the Fusion Characteristics of Ash in the Reduction of Pyrite and Phosphogypsum

  • Ye Wang
  • Junzhe Wang
  • Zhiye Zhang
  • Lin Yang
  • Xiushan Yang
  • Benhe Zhong
  • Xingjian Kong
  • Xinlong WangEmail author
Research Article
  • 104 Downloads

Abstract

The full utilization of solid waste—phosphogypsum (PG)—by reacting it with pyrite can not only produce acid but can also solve the serious issues associated with PG waste. However, this approach is limited because of crusting which blocks the rotary kiln and makes the acid production unsustainable. Hence, it is imperative to design a strategy to increase the eutectic temperature so as to prevent the generation of eutectic compounds, which always lead to crust formation, kiln-ringing, and blockage. In this study, the fusion characteristics of pyrite reduction were investigated via the determination of ash fusion points under various atmospheres as well as using different additives. The structural changes and fusion characteristics, in particular macromorphology, were observed by scanning electron microscopy. Furthermore, the optimal conditions to increase the softening temperatures were determined by means of single-factor and orthogonal experiment methods.

Keywords

Phosphogypsum Pyrite Fusion characteristics Additives Softening temperature 

Notes

Acknowledgements

Financial support for this project was provided by the National High Technology Research and Development Plan (863 of China, 2011AA06A106), which is gratefully acknowledged.

Supplementary material

40831_2017_138_MOESM1_ESM.docx (4.2 mb)
Supplementary material 1 (DOCX 4257 kb)

References

  1. 1.
    El-Didamony H, Gado HS, Awwad NS, Fawzy MM, Attallah MF (2013) Treatment of phosphogypsum waste produced from phosphate ore processing. J Hazard Mater 244:596–602CrossRefGoogle Scholar
  2. 2.
    Liao R, Xu X, Ji L, Zhou K (2012) Situation and prospects of China’s the phosphogypsum resources applications. Sulphuric Acid Ind 3:1–7Google Scholar
  3. 3.
    Wang JZ, Shao SG, Zhang ZY, Yang L, Zhong BH (2015) Research on melting characteristics of pyrite and phosphogypsum reaction process. Phosphate Compd Fertil 30(3):11–13Google Scholar
  4. 4.
    Shen W, Gan G, Dong R, Chen H (2012) Utilization of solidified phosphogypsum as Portland cement retarder. J Mater Cycles Waste 14(3):228–233CrossRefGoogle Scholar
  5. 5.
    Strydom CA, Potgieter JH (1999) Dehydration behaviour of a natural gypsum and a phosphogypsum during milling. Therm Acta 332(1):89–96CrossRefGoogle Scholar
  6. 6.
    Seo H, Jeong SG, Lim JH, Kim S (2015) Review on the heat storage performance and air pollutant adsorption properties of gypsum board according to the additives. J Korean Sol Energy Soc 35(1):97–106CrossRefGoogle Scholar
  7. 7.
    Zhou J, Yu D, Shu Z, Li T, Chen Y, Wang Y (2014) A novel two-step hydration process of preparing cement-free non-fired bricks from waste phosphogypsum. Constr Build Mater 73:222–228CrossRefGoogle Scholar
  8. 8.
    Zhou J, Gao H, Shu Z, Wang Y, Yan C (2012) Utilization of waste phosphogypsum to prepare non-fired bricks by a novel hydration-recrystallization process. Constr Build Mater 34:114–119CrossRefGoogle Scholar
  9. 9.
    Alva AK, Sumner ME (1990) Amelioration of acid soil infertility by phosphogypsum. Plant Soil 128(2):127–134CrossRefGoogle Scholar
  10. 10.
    Singh M, Garg M, Verma CL, Handa SK, Kumar R (1996) An improved process for the purification of phosphogypsum. Constr Build Mater 10(8):597–600CrossRefGoogle Scholar
  11. 11.
    Zhou J, Sheng Z, Li T, Shu Z, Chen Y, Wang Y (2016) Preparation of hardened tiles from waste phosphogypsum by a new intermittent pressing hydration. Ceram Int 42(6):7237–7245CrossRefGoogle Scholar
  12. 12.
    Higson GI (1951) The manufacture of ammonium sulphate from anhydrite. Chem Ind 36:50–754Google Scholar
  13. 13.
    Stinson JM, Mumma CE (1954) Regeneration of sulfuric acid from by-product calcium sulfate. J Ind Eng Chem 46(3):453–457CrossRefGoogle Scholar
  14. 14.
    Hu ZP, Zhang XX, Pang SH (2010) Study of reduction of phosphogypsum for preparation of calcium sulfide. J Chem Fertil Ind 37(5):12–13Google Scholar
  15. 15.
    Yang M, Qian JS, Wang Z, Huang Y (2007) Effect of impurities on the working performance of phosphogypsum. Mater Rev 21(6):104–106Google Scholar
  16. 16.
    Singh M (2003) Effect of phosphatic and fluoride impurities of phosphogypsum on the properties of selenite plaster. Cem Concr Res 33(9):1363–1369CrossRefGoogle Scholar
  17. 17.
    Liu Z, Zhao Z, Du C, Li S (2015) Study on parching procedure-acid leaching of Yunnan phosphogypsum decolorization mechanism based on Origin software. International Conference on Advanced Engineering Materials and TechnologyGoogle Scholar
  18. 18.
    Zhong BH, Zhang ZY, Wang XL, Yang XS (2011) New way of treatment of phosphogypsum by chemical method. Inorg Chem Ind 9:002Google Scholar
  19. 19.
    Pérez-López R, Nieto JM, López-Coto I, Aguado JL, Bolivar JP (2010) Dynamics of contaminants in phosphogypsum of the fertilizer industry of Huelva (SW Spain): from phosphate rock ore to the environment. Appl Geochem 25(5):705–715CrossRefGoogle Scholar
  20. 20.
    Gázquez MJ, Mantero J, Mosqueda F, Bolivar JP, García-Tenorio R (2014) Radioactive characterization of leachates and efflorescence in the neighboring areas of a phosphogypsum disposal site as a preliminary step before its restoration. J Environ Radioact 137:79–87CrossRefGoogle Scholar
  21. 21.
    Tayibi H, Choura M, López FA, Alguacil FJ, López-Delgado A (2009) Environmental impact and management of phosphogypsum. J Environ Manag 90(8):2377–2386CrossRefGoogle Scholar
  22. 22.
    Pérez-López R, Alvarez-Valero AM, Nieto JM (2007) Changes in mobility of toxic elements during the production of phosphoric acid in the fertilizer industry of Huelva (SW Spain) and environmental impact of phosphogypsum wastes. J Hazard Mater 148(3):745–750CrossRefGoogle Scholar
  23. 23.
    Rutherford PM, Dudas MJ, Samek RA (1994) Environmental impacts of phosphogypsum. Sci Total Environ 149:1–38CrossRefGoogle Scholar
  24. 24.
    Mohammad A, Omar A (2015) Health risk assessment of heavy metals contamination in tomato and green pepper plants grown in soils amended with phosphogypsum waste materials. Environ Geochem Health 37(2):287–304CrossRefGoogle Scholar
  25. 25.
    William H, Frank S, Hans Z (1957) Staff-industry collaborative report sulfuric acid from anhydrite. Ind Eng Chem Res 49(8):1204–1214CrossRefGoogle Scholar
  26. 26.
    Shen YZ (1963) Sulfuric Acid Ind. (Chinese) 7:11Google Scholar
  27. 27.
    Seung O, Wheelock TD (1990) Reductive decomposition of calcium sulfate with carbon monoxide: reaction mechanism. Ind Eng Chem Res 29(4):544–550CrossRefGoogle Scholar
  28. 28.
    Kuusik R, Salkkonen P, Niinistö L (1985) Thermal decomposition of calcium sulphate in carbon monoxide. J Therm Anal 30(1):187–193CrossRefGoogle Scholar
  29. 29.
    Gruncharov I, Pelovski Y, Dombalov I, Kirilov P (1985) Thermochemical decomposition of phosphogypsum under H2-CO2-H2O-Ar atmosphere. Thermochim Acta 93:617–620CrossRefGoogle Scholar
  30. 30.
    Zheng S, Ning P, Ma L, Niu X, Zhang W, Chen Y (2011) Reductive decomposition of phosphogypsum with high-sulfur-concentration coal to SO2 in an inert atmosphere. Chem Eng Res Des 89(12):2736–2741CrossRefGoogle Scholar
  31. 31.
    Yang X, Zhang Z, Wang X, Yang L, Zhong BH, Liu J (2013) Thermodynamic study of phosphogypsum decomposition by sulfur. J Chem Thermodyn 57:39–45CrossRefGoogle Scholar
  32. 32.
    Yang L, Yang XL, Zhang ZY, Zhong BH (2012) A method of sulfuric acid preparation by phosphogypsum decomposition using pyrite reduction. 201210042150. X. 2012-10-04Google Scholar
  33. 33.
    Bale CW, Chartrand P, Degterov SA, Eriksson G, Hack K, Mahfoud RB, Petersen S (2002) FactSage thermochemical software and databases. Calphad 26(2):189–228CrossRefGoogle Scholar
  34. 34.
    Ying Z, Xu L, Jiang M, Shen Y (2006) Effect of calcium ferrite morphology on anti-fracture ability of sinters. J Iron Steel Res Int 8(2):55–58Google Scholar
  35. 35.
    Lindberg D, Patrice C (2010) Corrigendum to “Thermodynamic evaluation and optimization of the (Ca+ C+ O+ S) system”. J Chem Thermo 42(11):1413CrossRefGoogle Scholar
  36. 36.
    Coal Science Research Institute (2009) GB/T219-2008 Coal ash melting characteristics determination method China. BeijingGoogle Scholar
  37. 37.
    Butts B, Smith R (1987) HSC chemistry students’ understanding of the structure and properties of molecular and ionic compounds. Res Sci Educ 17(1):192–201CrossRefGoogle Scholar
  38. 38.
    Alkan M, Hopa Ç, Yilmaz Z, Güler H (2005) The effect of alkali concentration and solid/liquid ratio on the hydrothermal synthesis of zeolite NaA from natural kaolinite. Microporous Mesoporous Mater 86(1):176–184CrossRefGoogle Scholar
  39. 39.
    Wu HY (1993) The factors influencing boiler slagging and preventive measures. East China Electr Power 9:48–52Google Scholar
  40. 40.
    Gong DS (1989) The high temperature viscosity model of coal ash. Therm Power Gener 1:28–33Google Scholar
  41. 41.
    Sun YL (1994) Hazard of mineral impurities in coal for boiler. China Water & Power Press, BeijingGoogle Scholar
  42. 42.
    Mao J, Xu M (2003) The effect of alkali mineral matter on the ash melting characteristic. J Huazhong Univ Sci Tech 31(4):59–62Google Scholar
  43. 43.
    Yang JG, Deng FR, Zhao H, Cen KF (2006) Mineral conversion of coal-ash in fusing process and the influence to ash fusion point. Chin Soc Elec Eng 26(17):122–126Google Scholar
  44. 44.
    Li Y, Hu D (2008) Experiment design and data processing (II). Chemical industry press, Beijing, pp 232–233Google Scholar
  45. 45.
    Pohl WL (2011) Economic geology: principles and practice—metals, minerals, coal and hydrocarbons. Wiley-Blackwell, West Sussex, p 331CrossRefGoogle Scholar
  46. 46.
    Lee MH, Cheng CF, Heine V, Klinowski J (1997) Distribution of tetrahedral and octahedral A1 sites in gamma alumina. Chem physics letters 265(6):673–676CrossRefGoogle Scholar
  47. 47.
    Juan PG, Swidersky HW, Schwarze T, Eicher J (2010) Inorganic fluoride materials from Solvay Fluor and their industrial applications. Functionalized inorganic fluorides: synthesis, characterization and properties of nanostructured solids. Wiley, Hoboken, p 205Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.School of Chemical EngineeringSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations