Advertisement

Journal of Sustainable Metallurgy

, Volume 3, Issue 4, pp 720–728 | Cite as

Modification of Basic Oxygen Furnace Slag for Cement Manufacturing

  • João B. Ferreira Neto
  • Catia FredericciEmail author
  • João O. G. Faria
  • Fabiano F. Chotoli
  • Tiago R. Ribeiro
  • Antônio Malynowskyj
  • Andre L. N. Silva
  • Valdecir A. Quarcioni
  • Andre A. Lotto
Thematic Section: Molten Slags, Fluxes, and Salts for Sustainable Processing
Part of the following topical collections:
  1. Molten Slags, Fluxes, and Salts for Sustainable Processing

Abstract

The use of steelmaking slag without chemical modification presents a deleterious effect on cement mechanical properties, due to the expansion caused by the presence of free CaO and MgO in the slag. This work deals with the modification of one basic oxygen furnace (BOF) slag with the objective of making it an appropriate additive in blended cement formulations. Two different modified slags were produced in a pilot-scale metallurgical reactor by mixing additives into 300 kg of remelted BOF slag. The liquid slags were cooled under two conditions: naturally (inside the reactor) and in contact with stainless steel balls. Quantitative X-ray diffraction and energy-dispersive spectroscopy, as well as qualitative scanning electron microscopy and Raman spectroscopy analyses of slag samples, revealed the relationship among cooling conditions and crystalline phases. The modified slags had CaO/SiO2 between 1.8 and 2.0, which is lower than the 3.8 for steelmaking slag. This reduced basicity resulted in the presence of dicalcium silicates (C2S) in higher amounts than in the steelmaking slag. β-Ca2SiO4, α′-Ca2SiO4, bredigite, and RO (FeO–MgO–MnO–CaO solid solution) were detected as major crystalline phases by X-ray diffraction and Raman spectroscopy. Cement samples were produced by mixing 25 wt% of modified steelmaking slag with 75 wt% of ordinary Portland cement, resulting in expansion lower than 0.1% in the autoclave tests and compressive strength higher than 40 MPa after 28 days. Cement samples produced by adding modified slags presented expansions 5 times lower than that determined for cement samples produced by adding steelmaking slag without any modification. The process indicates potential to be applied as a steelmaking slag treatment.

Keywords

Steelmaking slag BOF Cement Slag cooling Thermodynamic simulation Spectroscopic analysis 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from InterCement and Embrapii.

References

  1. 1.
    Bréad P (2016) Brazil-economic revival in latin America’s largest economy—global economics. http://www.gbm.scotiabank.com/English/bns_econ/latin.pdf. Accessed 26 Nov 2016
  2. 2.
    Instituto Aço Brasil (2016) http://www.acobrasil.org.br/site2015/estatisticas.asp. Accessed Nov 2016
  3. 3.
    Belhadj E, Diliberto C, Lecomte A (2012) Characterization and activation of basic oxygen furnace slag. Cem Concr Compos 34:34–40CrossRefGoogle Scholar
  4. 4.
    Faraone N, Tonello G, Furlani E, Maschio S (2009) Steelmaking slag as aggregate for mortars: effects of particle dimension on compression strength. Chemosphere 77:1152–1156CrossRefGoogle Scholar
  5. 5.
    Li JX, Yu QJ, Wei JX, Zhang TS (2011) Structural characteristics and hydration kinetics of modified steel slag. Cem Concr Res 41:324–329CrossRefGoogle Scholar
  6. 6.
    Tossavainen M, Engstrom F, Yang Q, Menad N, Larsson ML, Bjorkman B (2007) Characteristic of steel slag under different cooling conditions. Waste Manag 27:1335–1344CrossRefGoogle Scholar
  7. 7.
    Ferreira Neto JB, Faria JOG, Fredericci C, Chotolli FF, Silva ANL, Ferraro BB, Ribeiro TR, Malynowskyj A, Qarcioni VA, Lotto AA (2016) Modification of molten steelmaking slag for cement application. J Sustain Metall 2(1):13–27CrossRefGoogle Scholar
  8. 8.
    Kriskova L, Pontikes Y, Pandelaers L, Cizer O, Jones PT, van Balen K, Blanpain B (2013) Effect of high cooling rates on the mineralogy and hydraulic properties of stainless steel slags. Metall Trans B 44:1173–1184CrossRefGoogle Scholar
  9. 9.
    Qian GR, Sun DD, Tay JH, Lai ZY (2002) Hydrothermal reaction and autoclave stability of Mg bearing RO phase in steel slag. Br Ceram Trans 101(4):159–164CrossRefGoogle Scholar
  10. 10.
    Li Z, Zhou Z, Cheng X (2011) Effect of temperature on the present forms of MgO in the reconstruction of steel slag. Adv Mat Lett 2(3):206–209CrossRefGoogle Scholar
  11. 11.
    Tantawy MA (2014) Low temperature synthesis of belite cement from white sand and lime. Int J Eng Res Technol 3(10):1351–1355Google Scholar
  12. 12.
    Chan CJ, Kriven WM, Young JF (1992) Physical stabilization of α-β transformation in dicalcium silicate. J Am Ceram Soc 75(6):1621–1627CrossRefGoogle Scholar
  13. 13.
    Gautier M, Poirier J, Bodenan F, Franceschini G, Véron E (2013) Basic oxygen furnace (BOF) slag cooling: laboratory characteristics and prediction calculations. Int J Miner Process 123:94–101CrossRefGoogle Scholar
  14. 14.
    Solvi M, Greiveldinger B, Hoffmann M, Friederici C, Michels D (2013) Granulation of metallurgical slag. US 2013/0292878 A1Google Scholar
  15. 15.
    Kappes H, Michels D (2015) Dry slag granulation and energy recovery. In: Proceedings of the Fourth International Slag Valorization Symposium. Leuven, pp 39–52Google Scholar
  16. 16.
    ASTM E 246-10—Determination of iron by dichromate titrimetry (2015) In: Volume 03.05 - Analytical Chemistry for Metals, Ores, and Related Materials: E 32 - latestGoogle Scholar
  17. 17.
    Xu Z, Hwang J, Greenlund R, Huang X, Luo J, Anschuetz S (2003) Quantitative determination of metallic iron content in steel-making slag. J Miner Mater Charact Eng 2(1):65–70Google Scholar
  18. 18.
    Thibeau RJ, Brown CW, Heidersbach RH (1978) Raman spectra of possible corrosion products of iron. Appl Spectrosc 32(6):532–535CrossRefGoogle Scholar
  19. 19.
    de Faria DLA, Silva SV, de Oliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28(11):873–878CrossRefGoogle Scholar
  20. 20.
    Jung SS, Sohn II (2013) Effect of FeO concentration on the crystallization of high-temperature CaO-Al2O3-MgO-FeO melts. J Am Ceram Soc 96(4):1309–1316CrossRefGoogle Scholar
  21. 21.
    Shi CJ (2004) Steel slag—its production, processing, characteristics and cementitious properties. J Mater Civil Eng 16(3):230–236CrossRefGoogle Scholar
  22. 22.
    Murphy JN, Meadowcroft TR, Barr PV (1997) Enhancement of the cementitious properties of steelmaking slag. Can Metall Q 36(5):315–331CrossRefGoogle Scholar
  23. 23.
    Stephan D, Wilhelm P (2004) Synthesis of pure cementitious phases by sol-gel process as precursor. Z Anorg Allg Chem 630:1477–1483CrossRefGoogle Scholar
  24. 24.
    Lafuente B, Downs RT, Yang H, Stone N (2015) The power of databases: the RRUFF project. In: Armbruster T, Danisi RM, (eds) Highlights in mineralogical crystallography. Berlin, Germany, W. De Gruyter, pp 1–30. http://rruff.info/. Accessed 26 Nov 2016
  25. 25.
    Remy C, Reynard B, Madom M (1997) Raman spectroscopic investigation of dicalcium silicate: polymorphs and high-temperatures phase transformation. J Am Ceram Soc 80(2):413–423CrossRefGoogle Scholar
  26. 26.
    Sharma SK, Simons B, Yoder HS (1983) Raman study of anorthite, calcium Tschermak Pyroxene, and gehlenite in crystalline and glassy states. Am Miner 68(11):1113–1125Google Scholar
  27. 27.
    Demoulin A, Trigance C, Neff D, Foy E, Dillmann P, L’Hostis V (2010) The evolution of the corrosion of iron in hydraulic binders analysed from 46- and 260-year-old buildings. Corros Sci 52(10):3168–3179CrossRefGoogle Scholar
  28. 28.
    Wang A, Kuebler KE, Jolliff BL, Haskin LA (2004) Raman spectroscopy of Fe-Ti-Cr oxides, case study: Martian meteorite EETA79001. Am Miner 89:665–680CrossRefGoogle Scholar
  29. 29.
    Wesselsky A, Jensen OM (2009) Synthesis of pure Portland cement phases. Cem Concr Res 39:973–980CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • João B. Ferreira Neto
    • 1
  • Catia Fredericci
    • 1
    Email author
  • João O. G. Faria
    • 1
  • Fabiano F. Chotoli
    • 1
  • Tiago R. Ribeiro
    • 1
  • Antônio Malynowskyj
    • 1
  • Andre L. N. Silva
    • 1
  • Valdecir A. Quarcioni
    • 1
  • Andre A. Lotto
    • 2
  1. 1.Institute for Technological Research (IPT)São PauloBrazil
  2. 2.University of São PauloSão PauloBrazil

Personalised recommendations