Journal of Sustainable Metallurgy

, Volume 3, Issue 2, pp 405–415 | Cite as

Transforming Enhanced Landfill Mining Derived Gasification/Vitrification Glass into Low-Carbon Inorganic Polymer Binders and Building Products

  • Lieven MachielsEmail author
  • Lukas Arnout
  • Pengcheng Yan
  • Peter Tom Jones
  • Bart Blanpain
  • Yiannis Pontikes
Research Article


The current paper reviews the concept of the production of high-added value construction materials produced as part of a zero waste enhanced landfill mining process. The calorific fraction of the excavated waste is concentrated to produce a solid recovered fuel, which is introduced to a gasification/vitrification process to be converted to a synthetic gas, a slag and a metal alloy. The slag is subsequently cooled to produce a glass. The glass is milled and blended with an alkaline silicate solution to produce an inorganic polymer binder. The binder can be used as an alternative for ordinary Portland cement (OPC) in concrete to produce precast construction materials, such as pavers, tiles and wall elements. Pilot industrial production and testing of the durability, environmental footprint and economic feasibility of the process are currently being performed. Traditional OPC based production lines can be used, and when comparing with OPC based concrete, materials with similar to improved properties (e.g. higher hardening rate and higher final strength) can be produced.


Enhanced landfill mining Plasma gasification Solid recovered fuel Vitrification Inorganic polymer binders 



We gratefully acknowledge the Agentschap voor Innovatie door Wetenschap en Technologie (IWT), Milieu- en energietechnologie Innovatie Platform (MIP), i-CleanTech Vlaanderen, Groep Machiels and the partners in the Closing the Circle and PLASMAT projects.


  1. 1.
    Rockström J, Steffen W, Noone K et al (2009) Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc 14:472–475CrossRefGoogle Scholar
  2. 2.
    European Commission (2014) Report on critical raw materials for the EU: report of the Ad hoc Working Group on defining critical raw materials. Accessed 30 June 2016
  3. 3.
    Provis JL (2014) Green concrete or red herring? Future of alkali-activated materials. Adv Appl Ceram 113:472–477CrossRefGoogle Scholar
  4. 4.
    Snellings R, Mertens G, Elsen J (2012) Supplementary cementitious materials. Rev Miner Geochem 74:211–278. doi: 10.2138/rmg.2012.74.6 CrossRefGoogle Scholar
  5. 5.
    Provis JL, Van Deventer JSJ (2014) Alkali activated materials. Springer, LondonCrossRefGoogle Scholar
  6. 6.
    Davidovits J (2011) Geopolymer chemistry and applications, 3rd edn. Institut Géopolymère, Saint-QuentinGoogle Scholar
  7. 7.
    Provis LJ, van Deventer JSJ (2009) Geopolymers: structures, properties and industrial processing applications. Woodhead Publishing, CambridgeCrossRefGoogle Scholar
  8. 8.
    Zeng D, Van Deventer JSJ, Duxson P (2007) Dry mix cement composition, methods and systems involving same. Patent WO 2007109862 A1Google Scholar
  9. 9.
    Banah UK (2015) High performance geopolymer cement. Accessed 30 June 2016
  10. 10.
    Rajamane NP, Nataraja MC, Jeyalakshmi R, Nithiyanantham S (2015) Greener durable concretes through geopolymerisation of blast furnace slag. Mater Res Express. doi: 10.1088/2053-1591/2/5/055502 Google Scholar
  11. 11.
    Attwell C (2014) Geopolymer concrete: a practical approach. In: Proceedings of the first international conference on construction materials and structures, pp 466–474Google Scholar
  12. 12.
    PCI Geofug® - The high-convenience geopolymer joint grout that is almost self-cleaning. Accessed 30 June 2016
  13. 13.
    Introducing Bluey’s new Geopolymer range. In: 14/7/2015. Accessed 30 June 2016
  14. 14.
    GEOPOL® The enviromental binder process for a sustainable future. Accessed 30 June 2016
  15. 15.
    Bosmans A, Vanderreydt I, Geysen D, Helsen L (2013) The crucial role of Waste-to-Energy technologies in enhanced landfill mining: a technology review. J Clean Prod 55:10–23CrossRefGoogle Scholar
  16. 16.
    Jones PT, Geysen D, Tielemans Y et al (2013) Enhanced Landfill Mining in view of multiple resource recovery: a critical review. J Clean Prod 55:45–55CrossRefGoogle Scholar
  17. 17.
    Binnemans K, Jones PT, Blanpain B et al (2015) Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review. J Clean Prod 99:17–38CrossRefGoogle Scholar
  18. 18.
    Van Passel S, Dubois M, Eyckmans J et al (2013) The economics of enhanced landfill mining: private and societal performance drivers. J Clean Prod 55:92–102CrossRefGoogle Scholar
  19. 19.
    Taylor R, Ray R, Chapman C (2013) Advanced thermal treatment of auto shredder residue and refuse derived fuel. Fuel 106:401–409CrossRefGoogle Scholar
  20. 20.
    Danthurebandara M, Van Passel S, Machiels L, Van Acker K (2015) Valorization of thermal treatment residues in enhanced landfill mining: environmental and economic evaluation. J Clean Prod 99:275–285CrossRefGoogle Scholar
  21. 21.
    Kriskova L, Machiels L, Pontikes Y (2015) Inorganic polymers from a plasma convertor slag: effect of activating solution on microstructure and properties. J Sustain Metall 1:240–251CrossRefGoogle Scholar
  22. 22.
    Kourti I, Rani DA, Deegan D et al (2010) Production of geopolymers using glass produced from DC plasma treatment of air pollution control (APC) residues. J Hazard Mater 176:704–709CrossRefGoogle Scholar
  23. 23.
    Kourti I, Rani DA, Boccaccinia R, Cheeseman CR (2011) Geopolymers from DC plasma-treated air pollution control residues, metakaolin, and granulated blast furnace slag. J Mater Civ Eng 23:735–740CrossRefGoogle Scholar
  24. 24.
    Kourti I, Devaraj AR, Guerrero Bustos A et al (2011) Geopolymers prepared from DC plasma treated air pollution control (APC) residues glass: properties and characterisation of the binder phase. J Hazard Mater 196:86–92CrossRefGoogle Scholar
  25. 25.
    Moustakas K, Fatta D, Malamis S et al (2005) Demonstration plasma gasification/vitrification system for effective hazardous waste treatment. J Hazard Mater 123:120–126CrossRefGoogle Scholar
  26. 26.
    Byun Y, Namkung W, Cho M et al (2010) Demonstration of thermal plasma gasification/vitrification for municipal solid waste treatment. Environ Sci Technol 44:6680–6684CrossRefGoogle Scholar
  27. 27.
    Quaghebeur M, Laenen B, Geysen D et al (2013) Characterization of landfilled materials: screening of the enhanced landfill mining potential. J Clean Prod 55:72–83CrossRefGoogle Scholar
  28. 28.
    Pontikes Y, Machiels L, Onisei S et al (2013) Slags with a high Al and Fe content as precursors for inorganic polymers. Appl Clay Sci 73:93–102CrossRefGoogle Scholar
  29. 29.
    Machiels L, Arnout L, Jones PT et al (2014) Inorganic polymer cement from Fe-silicate glasses: varying the activating solution to glass ratio. Waste Biomass Valoriz 5:411–428CrossRefGoogle Scholar
  30. 30.
    Yan P, Pandelaers L, Machiels L et al (2015) Effect of gas–slag interaction on valorisation of refuse derived fuel treated with plasma gasification. Min Process Extr Metall 124:76–82CrossRefGoogle Scholar
  31. 31.
    Yamaguchi N, Nagaishi M, Kisu K et al (2013) Preparation of monolithic geopolymer materials from urban waste incineration slags. J Ceram Soc J 121:847–854CrossRefGoogle Scholar
  32. 32.
    ECN Phyllis 2 database for biomass and waste (2012). Accessed 30 June 2016
  33. 33.
    De Boom A, Degrez M (2012) Belgian MSWI fly ashes and APC residues: a characterisation study. Waste Manag 32:1163–1170CrossRefGoogle Scholar
  34. 34.
    Spooren J, Quaghebeur M, Nielsen P, et al (2013). Material recovery and upcycling within the elfm concept of the Remo case. In: Proceedings of 2nd international academic symposium on enhanced landfill mining, Houthalen-Helchteren, pp 131–156Google Scholar
  35. 35.
    Taylor HFW (1997) Cement chemistry, 2nd edn. Thomas Telford Publishing, LondonCrossRefGoogle Scholar
  36. 36.
    Nagels E, Arnout S (2016) The use of flowsheet modelling for feasibility assessment of novel waste treatment methods. In: Proceedings of 3rd international enhancement landfill mining symposium, Lisbon, Portugal, pp 277–287Google Scholar
  37. 37.
    Machiels L, Arnout L, Nagels E, et al (2015) Properties of inorganic polymer cement from ferric and ferrous vitrified residues of plasma gasification. In: Malfliet A, Pontikes Y (eds) Proceedings of 4th international slag valorisation symposium Leuven, pp 319–324Google Scholar
  38. 38.
    Francois E, Elsen J, Pontikes Y, Machiels L (2015) Influence of the chemistry of vitrified residues on the properties of blended inorganic polymers with calcined kaolinitic clay. In: Malfliet A, Pontikes Y (eds) Proceedings of 4th international slag valorisation symposium, Leuven, pp 257–261Google Scholar
  39. 39.
    Arnout L, Machiels L, Cappuyns V, et al (2015) The impact of curing conditions on heavy metal immobilisation of Fe-rich inorganic polymers. In: Malfliet A, Pontikes Y (eds) Proceedings of 4th international slag valorisation symposium, Leuven, pp 249–256Google Scholar
  40. 40.
    Lee NP (2007) Creep and shrinkage of inorganic polymer concrete. BRANZ Study Report SR 175, BRANZ Ltd, Judgeford, New ZealandGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society (TMS) 2016

Authors and Affiliations

  • Lieven Machiels
    • 1
    Email author
  • Lukas Arnout
    • 1
  • Pengcheng Yan
    • 1
  • Peter Tom Jones
    • 1
  • Bart Blanpain
    • 1
  • Yiannis Pontikes
    • 1
  1. 1.Department of Materials EngineeringKU LeuvenHeverleeBelgium

Personalised recommendations