Journal of Sustainable Metallurgy

, Volume 3, Issue 2, pp 219–229 | Cite as

Pyrometallurgical Treatment of High Manganese Containing Deep Sea Nodules

Research Article


The steadily growing demand for critical metals and their price increase on the world market makes the mining of marine mineral resources in the not too distant future probable. Therefore, a focus lays on the development of a sustainable, zero-waste process route to extract valuable metals from marine mineral resources such as manganese nodules. These nodules contain industrially important metals like nickel, copper and cobalt in substantial amounts. However, the development of a general metallurgical process route is challenging due to varying nodule compositions. Especially challenging is a high Mn content, since the liquidus temperature of a smelted slag phase directly correlates with Mn content. This paper presents thermodynamic models created in FactSage™ 6.4, which support direct reduction smelting of manganese nodules in an electric arc furnace. Thermodynamic modeling has never been applied to the metallurgical treatment of manganese nodules, and therefore, represents a significant advantage over previous studies. Furthermore, these calculations were verified in lab scale experiments. The nodules were supplied by BGR, German Federal Institute for Geosciences and Natural Resources, and have origin in the German licensed territory of the Clarion Clipperton Zone in the Pacific Ocean.


Marine mineral resources Manganese nodules Extractive metallurgy Pyrometallurgy Thermodynamic modeling 


  1. 1.
    Jana RK (1999) Processing of polymetallic sea nodules: an overview. The proceedings of the Third ISOPE Ocean Mining Symposium. International Society of Offshore and Polar Engineers, Goa, India, pp 237–245Google Scholar
  2. 2.
    Lehmköster J, Gelpke N, Visbeck M (2014) World Ocean Review 3: Resources of the sea-chances and risks. maribus gGmbH, HamburgGoogle Scholar
  3. 3.
    Senanayake G (2011) Acid leaching of metals from deep-sea manganese nodules—a critical review of fundamentals and applications. Miner Eng 24(13):1379–1396. doi:10.1016/j.mineng.2011.06.003 CrossRefGoogle Scholar
  4. 4.
    Parhi PK, Park KH, Nam CW et al (2013) Extraction of rare earth metals from deep sea nodule using H2SO4 solution. Int J Miner Process 119:89–92. doi:10.1016/j.minpro.2013.01.005 CrossRefGoogle Scholar
  5. 5.
    Kohga T, Imamura M, Takahashi J et al (1995) Recovering iron, manganese, copper, cobalt, and high-purity nickel from sea nodules. JOM 47(12):40–43. doi:10.1007/BF03221339 CrossRefGoogle Scholar
  6. 6.
    Pophanken AK, Friedmann D, Friedrich B (2013) Manganese nodules—future resource for technology metals? (Manganknollen—zukünftige Rohstoffbasis für Technologiemetalle?), vol 133. GDMB, pp 1–16Google Scholar
  7. 7.
    Friedmann D, Friedrich B (2015) Pyrometallurgical extraction of valuable metals from polymetallic deep-sea nodules of the German Licensed Territory. European Metallurgical Conference Proceedings. GDMB, Düsseldorf, pp 989–96Google Scholar
  8. 8.
    Halbach P, Friedrich G, von Stackelberg U (1988) The manganese nodule belt of the Pacific Ocean. Ferdinand Enke Verlag, StuttgartGoogle Scholar
  9. 9.
    Haynes BW, Law SL, Barron DC et al (1985) Pacific manganese nodules: characterization and processing. Bulletin (United States. Bureau of Mines) 674:43Google Scholar
  10. 10.
    Hubred GL (1980) Manganese nodule extractive metallurgy review 1973–1978. Mar Min 3:191–212Google Scholar
  11. 11.
    Han KN, Fuerstenau DW (1983) Metallurgy and processing of marine manganese nodules. Miner Process Extr Metall Rev 1:1–83. doi:10.1080/08827508308952589 Google Scholar
  12. 12.
    Agarwal JC, Wilder TC (1974) Recovery of metal values from manganese nodules. US Patent 3788841Google Scholar
  13. 13.
    Agarwal JC, Beecher N, Davies DS (1976) Processing of ocean nodules: a technical and economic review. J Met 28(4):24–31Google Scholar
  14. 14.
    Han KN, Fuerstenau DW (1975) Acid leaching of ocean manganese nodules at elevated temperatures. Int J Miner Process 2:163–171. doi:10.1016/0301-7516(75)90019-8 CrossRefGoogle Scholar
  15. 15.
    Cardwell PH, Kane WS (1976) Method for separating metal constituents from ocean floor nodules. US Patent 3950486AGoogle Scholar
  16. 16.
    Sridhar R, Jones WE, Warner JS (1976) Extraction of copper, nickel, and cobalt from sea nodules. J Met 28(4):32–37Google Scholar
  17. 17.
    Han KN (1997) Strategies for processing of ocean floor manganese nodules. Trans Indian Inst Met 51(1):41–54Google Scholar
  18. 18.
    Cardwell PH (1973) Extractive metallurgy of ocean nodules. Min Congr J 59:38–43Google Scholar
  19. 19.
    Agarwal S, Sahu KK, Jana RK et al. (2009) Recovery of Cu, Ni, Co and Mn from sea nodules by direct reduction smelting. Proceedings of the Eighth ISOPE Ocean Mining Symposium. pp 131–136Google Scholar
  20. 20.
    King D, Pasho DW (1979) A generalized estimating model for the Ocean Management Inc., manganese nodule processing facility—Mineral Policy Sector Internal ReportGoogle Scholar
  21. 21.
    Mohwinkel D, Kleint C, Koschinsky A (2014) Phase associations and potential selective extraction methods for selected high-tech metals from ferromanganese nodules and crusts with siderophores. Appl Geochem 43:13–21. doi:10.1016/j.apgeochem.2014.01.010 CrossRefGoogle Scholar
  22. 22.
    Bale CW, Chartrand P, Degterov SA et al (2002) FactSage thermochemical software and databases. Calphad 26(2):189–228. doi:10.1016/S0364-5916(02)00035-4 CrossRefGoogle Scholar
  23. 23.
    Habashi F (ed) (1997) Handbook of extractive metallurgy. Wiley, WeinheimGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society (TMS) 2016

Authors and Affiliations

  1. 1.Department of Process Metallurgy and Metal Recycling (IME)RWTH Aachen UniversityAachenGermany

Personalised recommendations