Induction Butt Welding Followed by Abnormal Grain Growth: A Promising Route for Joining of Fe–Mn–Al–Ni Tubes

  • M. VollmerEmail author
  • D. Baunack
  • D. Janoschka
  • T. Niendorf


The present study focuses on induction butt welding of Fe–Mn–Al–Ni tubes. By comparing different processing routes, characterized by different temperatures and forces during welding, it was possible to find adequate process parameters for realization of defect-free joints. Moreover, it was feasible to fully reset the microstructure prevailing in the heat-affected zone by a subsequent cyclic heat treatment promoting abnormal grain growth. Tensile testing up to a maximum strain of 6% revealed excellent pseudoelastic properties of the final microstructural condition. The present study shows for the first time that welding with superimposed pressure is well suited for joining of Fe–Mn–Al–Ni shape memory alloys. Furthermore, it is revealed that abnormal grain growth induced by a cyclic heat treatment can be applied independently of the geometry of the component.


Iron-based shape memory alloys Complex geometry Geometry independent single crystals Reset of microstructure 



Financial support by German Research Foundation (Project No. 400008732 (NI 1327/20–1)) is gratefully acknowledged. TN acknowledges support by University of Kassel within the SmartCon project.


  1. 1.
    Wayman CM (1971) On memory effects related to martensitic transformations and observations in β-brass and Fe3Pt. Scr Metall 5(6):489–492. CrossRefGoogle Scholar
  2. 2.
    Koval YUN, Kokorin VV, Khandros LG (1979) The shape-memory effect in iron–nickel–cobalt–titanium alloys. Fiz Met Metalloved 48(6):1309–1311Google Scholar
  3. 3.
    Sato A, Chishima E, Soma K et al (1982) Shape memory effect in γ⇄ϵ transformation in Fe-30Mn-1Si alloy single crystals. Acta Metall 30(6):1177–1183. CrossRefGoogle Scholar
  4. 4.
    Tanaka Y, Himuro Y, Kainuma R et al (2010) Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science 327(5972):1488–1490. CrossRefGoogle Scholar
  5. 5.
    Chumlyakov YI, Kireeva IV, Poklonov VV et al (2014) The shape-memory effect and superelasticity in single-crystal ferromagnetic alloy FeNiCoAlTi. Tech Phys Lett 40(9):747–750. CrossRefGoogle Scholar
  6. 6.
    Chumlyakov YI, Kireeva IV, Kuts OA et al (2015) Shape memory effect and superelasticity in [001] single crystals of Fe–Ni–Co–Al–Nb(B) ferromagnetic alloy. Russ Phys J 58(7):889–897. CrossRefGoogle Scholar
  7. 7.
    Ma J, Hornbuckle BC, Karaman I et al (2013) The effect of nanoprecipitates on the superelastic properties of FeNiCoAlTa shape memory alloy single crystals. Acta Mater 61(9):3445–3455. CrossRefGoogle Scholar
  8. 8.
    Omori T, Abe S, Tanaka Y et al (2013) Thermoelastic martensitic transformation and superelasticity in Fe–Ni–Co–Al–Nb–B polycrystalline alloy. Scr Mater 69(11–12):812–815. CrossRefGoogle Scholar
  9. 9.
    Lee D, Omori T, Kainuma R (2014) Ductility enhancement and superelasticity in Fe–Ni–Co–Al–Ti–B polycrystalline alloy. J Alloy Compd 617:120–123. CrossRefGoogle Scholar
  10. 10.
    Krooß P, Niendorf T, Karaman I et al (2012) Cyclic deformation behavior of aged FeNiCoAlTa single crystals. Funct Mater Lett 05(04):1250045. CrossRefGoogle Scholar
  11. 11.
    Omori T, Ando K, Okano M et al (2011) Superelastic effect in polycrystalline ferrous alloys. Science 333(6038):68–71. CrossRefGoogle Scholar
  12. 12.
    Vollmer M, Krooß P, Karaman I et al (2017) On the effect of titanium on quenching sensitivity and pseudoelastic response in Fe-Mn-Al-Ni-base shape memory alloy. Scr Mater 126:20–23. CrossRefGoogle Scholar
  13. 13.
    Vollmer M, Arold T, Kriegel MJ et al (2019) Promoting abnormal grain growth in Fe-based shape memory alloys through compositional adjustments. Nat Commun 10(1):1. CrossRefGoogle Scholar
  14. 14.
    Omori T, Okano M, Kainuma R (2013) Effect of grain size on superelasticity in Fe-Mn-Al-Ni shape memory alloy wire. APL Mater 1(3):32103. CrossRefGoogle Scholar
  15. 15.
    Tseng LW, Ma J, Vollmer M et al (2016) Effect of grain size on the superelastic response of a FeMnAlNi polycrystalline shape memory alloy. Scr Mater 125:68–72. CrossRefGoogle Scholar
  16. 16.
    Vollmer M, Segel C, Krooß P et al (2015) On the effect of gamma phase formation on the pseudoelastic performance of polycrystalline Fe–Mn–Al–Ni shape memory alloys. Scr Mater 108:23–26. CrossRefGoogle Scholar
  17. 17.
    Ueland SM, Chen Y, Schuh CA (2012) Oligocrystalline shape memory alloys. Adv Funct Mater 22(10):2094–2099. CrossRefGoogle Scholar
  18. 18.
    Ueland SM, Schuh CA (2012) Superelasticity and fatigue in oligocrystalline shape memory alloy microwires. Acta Mater 60(1):282–292. CrossRefGoogle Scholar
  19. 19.
    Ueland SM, Schuh CA (2013) Grain boundary and triple junction constraints during martensitic transformation in shape memory alloys. J Appl Phys 114(5):53503. CrossRefGoogle Scholar
  20. 20.
    Ueland SM (2013) Grain constraint and size effects in shape memory alloy microwires, Massachusetts Institute of TechnologyGoogle Scholar
  21. 21.
    Xie J-X, Liu J-L, Huang H-Y (2015) Structure design of high-performance Cu-based shape memory alloys. Rare Met 34(9):607–624. CrossRefGoogle Scholar
  22. 22.
    Vollmer M, Krooß P, Segel C et al (2015) Damage evolution in pseudoelastic polycrystalline Co–Ni–Ga high-temperature shape memory alloys. J Alloy Compd 633:288–295. CrossRefGoogle Scholar
  23. 23.
    Omori T, Iwaizako H, Kainuma R (2016) Abnormal grain growth induced by cyclic heat treatment in Fe-Mn-Al-Ni superelastic alloy. Mater Des 101:263–269. CrossRefGoogle Scholar
  24. 24.
    Vollmer M, Krooß P, Kriegel MJ et al (2016) Cyclic degradation in bamboo-like Fe–Mn–Al–Ni shape memory alloys—the role of grain orientation. Scr Mater 114:156–160. CrossRefGoogle Scholar
  25. 25.
    Omori T, Kusama T, Kawata S et al (2013) Abnormal grain growth induced by cyclic heat treatment. Science 341(6153):1500–1502. CrossRefGoogle Scholar
  26. 26.
    Kusama T, Omori T, Saito T et al (2017) Ultra-large single crystals by abnormal grain growth. Nat Commun 8(1):354. CrossRefGoogle Scholar
  27. 27.
    Zeng Z, Yang M, Oliveira JP et al (2016) Laser welding of NiTi shape memory alloy wires and tubes for multi-functional design applications. Smart Mater Struct 25(8):85001. CrossRefGoogle Scholar
  28. 28.
    Oliveira JP, Zeng Z, Omori T et al (2016) Improvement of damping properties in laser processed superelastic Cu-Al-Mn shape memory alloys. Mater Des 98:280–284. CrossRefGoogle Scholar
  29. 29.
    Oliveira JP, Crispim B, Zeng Z et al (2019) Microstructure and mechanical properties of gas tungsten arc welded Cu-Al-Mn shape memory alloy rods. J Mater Process Technol 271:93–100. CrossRefGoogle Scholar
  30. 30.
    Oliveira JP, Zeng Z, Berveiller S et al (2018) Laser welding of Cu-Al-Be shape memory alloys: microstructure and mechanical properties. Mater Des 148:145–152. CrossRefGoogle Scholar
  31. 31.
    Krooß P, Günther J, Halbauer L et al (2017) Electron beam welding of Fe–Mn–Al–Ni shape memory alloy: microstructure evolution and shape memory response. Funct Mater Lett 10(04):1750043. CrossRefGoogle Scholar
  32. 32.
    Omori T, Nagasako M, Okano M et al (2012) Microstructure and martensitic transformation in the Fe-Mn-Al-Ni shape memory alloy with B2-type coherent fine particles. Appl Phys Lett 101(23):231907. CrossRefGoogle Scholar
  33. 33.
    Tseng LW, Ma J, Hornbuckle BC et al (2015) The effect of precipitates on the superelastic response of [100] oriented FeMnAlNi single crystals under compression. Acta Mater 97:234–244. CrossRefGoogle Scholar
  34. 34.
    ASM International (2011) ASM handbook. ASM International, Metals ParkGoogle Scholar
  35. 35.
    Walnsch A, Kriegel MJ, Fabrichnaya O et al (2019) Thermodynamic assessment and experimental investigation of the systems Al–Fe–Mn and Al–Fe–Mn–Ni. Calphad 66:101621. CrossRefGoogle Scholar
  36. 36.
    Vollmer M, Kriegel MJ, Walnsch A et al (2019) On the microstructural and functional stability of Fe-Mn-Al-Ni at ambient and elevated temperatures. Scr Mater 162:442–446. CrossRefGoogle Scholar
  37. 37.
    Ozcan H, Ma J, Wang SJ et al (2017) Effects of cyclic heat treatment and aging on superelasticity in oligocrystalline Fe-Mn-Al-Ni shape memory alloy wires. Scr Mater 134:66–70. CrossRefGoogle Scholar
  38. 38.
    Abuzaid W, Wu Y, Sidharth R et al (2019) FeMnNiAl iron-based shape memory alloy: promises and challenges. Shape Mem Superelast 1(333):C4–199. CrossRefGoogle Scholar
  39. 39.
    Vallejos JM, Malarría JA (2019) Growing Fe-Mn-Al-Ni single crystals by combining directional annealing and thermal cycling. J Mater Process Technol. CrossRefGoogle Scholar

Copyright information

© ASM International 2020

Authors and Affiliations

  1. 1.Institut für Werkstofftechnik (Materials Engineering)Universität KasselKasselGermany

Personalised recommendations