Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Effect of Local Arrangement of Excess Mn on Phase Stability in Ni–Mn–Ga Martensite: An Ab Initio Study

  • 88 Accesses

Abstract

The effect of excess Mn on the stability of modulation and elastic properties was investigated using ab initio electronic structure calculations in Ni–Mn–Ga magnetic shape memory alloy. We used the structure of four layered modulated martensite known as 4O to describe modulation of the martensitic lattice. We found that elastic properties of stoichiometric 4O martensite are very similar to elastic properties of 10M martensite reported in previous calculations. The modulated structure becomes less stable than nonmodulated martensite above 3 at.% of excess Mn which corresponds very well to experimental observation at low temperature. Elastic properties of NM martensite are not significantly affected by Mn content nor local arrangements of Mn-excess atoms. We also found that Mn-excess atoms prefer occupation of distant positions for low Mn-excess composition. The occupation of closest position is preferred for alloys with higher content of Mn.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Kaufmann S, Niemann R, Thersleff T, Rößler UK, Heczko O, Buschbeck J, Holzapfel B, Schultz L, Fähler S (2011) Modulated martensite: why it forms and why it deforms easily. New J Phys 13:053029

  2. 2.

    Acet M, Mañosa L, Planes A (2011) Magnetic-field induced effects in martensitic Heusler-based magnetic shape memory alloys. In: Buschow KHJ (ed) Handbook of magnetic materials, vol 19. Elsevier Science, Amsterdam, pp 231–289

  3. 3.

    Heczko O, Scheerbaum N, Gutfleisch O (2009) Magnetic shape memory phenomena. In: Liu J, Fullerton E, Gutfleisch O, Sellmyer D (eds) Nanoscale magnetic materials and applications. Springer, Boston, MA, pp 399–439

  4. 4.

    Seiner H, Straka L, Heczko O (2014) A microstructural model of motion of macro-twin interfaces in Ni–Mn–Ga 10M martensite. J Mech Phys Solids 64:198–211

  5. 5.

    Ullakko K, Huang JK, Kantner C, O’Handley RC, Kokorin VV (1996) Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl Phys Lett 69:1966–1968

  6. 6.

    Schlüter K, Holz B, Raatz A (2012) Principle design of actuators driven by magnetic shape memory alloys. Adv Eng Mater 14:682–686

  7. 7.

    Karaman I, Basaran B, Karaca HE, Karsilayan AI, Chumlyakov YI (2007) Energy harvesting using martensite variant reorientation mechanism in a NiMnGa magnetic shape memory alloy. Appl Phys Lett 90:172505

  8. 8.

    Wilson SA et al (2007) New materials for micro-scale sensors and actuators: an engineering review. Mater Sci Eng R 56:1–129

  9. 9.

    Martynov VV, Kokorin VV (1992) The crystal structure of thermally- and stress-induced martensites in Ni2MnGa single crystals. J Phys III 2:739–749

  10. 10.

    Opeil CP, Mihaila B, Schulze RK, Mañosa L, Planes A, Hults WL, Fisher RA, Riseborough PS, Littlewood PB, Smith JL, Lashley JC (2008) Combined experimental and theoretical investigation of the premartensitic transition in Ni2MnGa. Phys Rev Lett 100:165703

  11. 11.

    Seiner H, Kopecký V, Landa M, Heczko O (2014) Elasticity and magnetism of Ni2MnGa premartensitic tweed. Phys Status Solidi B 251:2097–2103

  12. 12.

    Webster PJ, Ziebeck KRA, Town SL, Peak MS (1984) Magnetic order and phase transformation in Ni2MnGa. Philos Mag B 49:295–310

  13. 13.

    Lanska N, Söderberg O, Sozinov A, Ge Y, Ullakko K, Lindroos VK (2004) Composition and temperature dependence of the crystal structure of Ni–Mn–Ga alloys. J Appl Phys 95:8074–8078

  14. 14.

    Albertini F, Paoluzi A, Pareti L, Solzi M, Righi L, Villa E, Besseghini S, Passaretti F (2006) Phase transitions and magnetic entropy change in Mn-rich Ni2MnGa Alloys. J Appl Phys 100:023908

  15. 15.

    Straka L, Drahokoupil J, Pacherová O, Fabiánová K, Kopecký V, Seiner H, Hänninen H, Heczko O (2016) The relation between lattice parameters and very low twinning stress in Ni50Mn25+xGa25−x magnetic shape memory alloys. Smart Mater Struct 25:025001

  16. 16.

    Straka L, Sozinov A, Drahokoupil J, Kopecký V, Hänninen H, Heczko O (2013) Effect of intermartensite transformation on twinning stress in Ni-Mn-Ga 10M martensite. J Appl Phys 114:063504

  17. 17.

    Heczko O (2014) Magnetic shape memory effect and highly mobile twin boundaries. Mater Sci Technol 30:1559–1578

  18. 18.

    Söderberg O, Straka L, Novák V, Heczko O, Hannula S-P, Lindroos VK (2004) Tensile/compressive behaviour of non-layered tetragonal Ni52.8Mn25.7Ga21.5 alloy. Mater Sci Eng A 386:27–33

  19. 19.

    Sozinov A, Lanska N, Soroka A, Zou W (2013) 12% magnetic field-induced strain in Ni-Mn-Ga-based non-modulated martensite. Appl Phys Lett 102:021902

  20. 20.

    Soroka A, Sozinov A, Lanska N, Rameš M, Straka L, Ullakko K (2018) Composition and temperature dependence of twinning stress in non-modulated martensite of Ni-Mn-Ga-Co-Cu magnetic shape memory alloys. Scr Mater 144:52–55

  21. 21.

    Heczko O, Straka L, Novak V, Fähler S (2010) Magnetic anisotropy of nonmodulated Ni–Mn–Ga martensite revisited. J Appl Phys 107:09A914

  22. 22.

    Sozinov A, Soroka A, Lanska N, Rameš M, Straka L, Ullakko K (2017) Temperature dependence of twinning and magnetic stresses in Ni46Mn24Ga22Co4Cu4 alloy with giant 12% magnetic field-induced strain. Scr Mater 131:33–36

  23. 23.

    Dai L, Cullen J, Wuttig M (2004) Intermartensitic transformation in a NiMnGa alloy. J Appl Phys 95:6957–6959

  24. 24.

    Seguí D, Chernenko VA, Pons J, Cesari E, Khovailo V, Takagi T (2005) Low temperature-induced intermartensitic phase transformations in Ni–Mn–Ga single crystal. Acta Mater 53:111–120

  25. 25.

    Soolshenko V, Lanska N, Ullakko K (2003) Structure and twinning stress of martensites in non-stoichiometric Ni2MnGa single crystal. J Phys IV France 112:947–950

  26. 26.

    Heczko O, Kopecký V, Sozinov A, Straka L (2013) Magnetic shape memory effect at 1.7 K. Appl Phys Lett 103(7):072405

  27. 27.

    Kaufmann S, Rößler UK, Heczko O, Wuttig M, Buschbeck J, Schultz L, Fähler S (2010) Adaptive modulations of martensites. Phys Rev Lett 104:145702

  28. 28.

    Niemann R, Fähler S (2017) Geometry of adaptive martensite in Ni-Mn-based heusler alloys. J Alloys Compd 703:280–288

  29. 29.

    Zhdanov GS (1945) The numerical symbol of close packing of spheres and its application in the theory of close packings. C R Acad Sci USSR 48:39–42

  30. 30.

    Hickel T, Uijttewaal M, Al-Zubi A, Dutta B, Grabowski B, Neugebauer J (2012) Ab initio-based prediction of phase diagrams: application to magnetic shape memory alloys. Adv Eng Mater 14:547–561

  31. 31.

    Uijttewaal MA, Hickel T, Neugebauer J, Gruner ME, Entel P (2009) Understanding the phase transitions of the Ni2MnGa magnetic shape memory system from first principles. Phys Rev Lett 102:035702

  32. 32.

    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

  33. 33.

    Entel P, Gruner ME, Comtesse D, Wutting M (2013) Interaction of phase transformation and magnetic properties of Heusler alloys: a density functional theory study. JOM 65:1540–1549

  34. 34.

    Dutta B, Çakır A, Giacobbe C, Al-Zubi A, Hickel T, Acet M, Neugebauer J (2016) Ab initio prediction of martensitic and intermartensitic phase boundaries in Ni-Mn-Ga. Phys Rev Lett 116:025503

  35. 35.

    Xu N, Raulot J-M, Li Z-B, Bai J, Zhang Y-D, Zhao X, Zuo L, Esling C (2012) Oscillation of the magnetic moment in modulated martensites in Ni2MnGa studied by ab initio calculations. Appl Phys Lett 100:084106

  36. 36.

    Zelený M, Straka L, Sozinov A, Heczko O (2016) Ab initio prediction of stable nanotwin double layers and 4O structure in Ni2MnGa. Phys Rev B 94:224108

  37. 37.

    Zelený M (2018) Nanotwinning and modulation of martensitic structures in Ni2MnGa alloy: an ab initio study. Acta Phys Pol A 134:658–661

  38. 38.

    Zelený M, Straka L, Sozinov A, Heczko O (2018) Transformation paths from cubic to low-symmetry structures in Heusler Ni2MnGa compound. Sci Rep 8:7275

  39. 39.

    Gruner ME, Niemann R, Entel P, Pentcheva R, Rößler UK, Nielsch K, Fähler S (2018) Modulations in martensitic Heusler alloys originate from nanotwin ordering. Sci Rep 8:8489

  40. 40.

    Xu N, Raulot JM, Li ZB, Zhang YD, Bai J, Peng W, Meng XY, Zhao X, Zuo L, Esling C (2014) Composition dependent phase stability of Ni–Mn–Ga alloys studied by ab initio calculations. J Alloys Compd 614:126–130

  41. 41.

    Enkovaara J, Heczko O, Ayuela A, Nieminen RM (2003) Coexistence of ferromagnetic and antiferromagnetic order in Mn-doped Ni2MnGa. Phys Rev B 67:212405

  42. 42.

    Chen J, Li Y, Shang JX, Xu HB (2006) First principles calculations on martensitic transformation and phase instability of Ni–Mn–Ga high temperature shape memory alloys. Appl Phys Lett 89:231921

  43. 43.

    Buchelnikov VD, Sokolovskiy VV, Miroshkina ON, Zagrebin MA, Nokelainen J, Pulkkinen A, Barbiellini B, Lähderanta E (2019) Correlation effects on ground-state properties of ternary Heusler alloys: first-principles study. Phys Rev B 99:014426

  44. 44.

    Zunger A, Wei S-H, Ferreira LG, Bernard JE (1990) Special quasirandom structures. Phys Rev Lett 65:353–356

  45. 45.

    Soven P (1967) Coherent-potential model of substitutional disordered alloys. Phys Rev 156:809–813

  46. 46.

    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

  47. 47.

    Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

  48. 48.

    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

  49. 49.

    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868; Errata: 78, 1396(E), (1997)

  50. 50.

    Methfessel M, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616–3621

  51. 51.

    Bučko T, Hafner J, Ángyán JG (2005) Geometry optimization of periodic systems using internal coordinates. J Chem Phys 122:124508

  52. 52.

    Yu R, Zhu J, Ye HQ (2010) Calculations of single-crystal elastic constants made simple. Comput Phys Commun 181:671–675

  53. 53.

    Zhou L, Holec D, Mayrhofer PH (2013) First-principles study of elastic properties of cubic Cr1−xAlxN alloys. J Appl Phys 113:043511

  54. 54.

    Nöger D (2019) A command line tool written in Python/Cython for finding optimized SQS structures. GitHub. https://github.com/dnoeger/sqsgenerator. Accessed 13 April 2019

  55. 55.

    Jiang CB, Muhammad Y, Deng LF, Wu W, Xu HB (2004) Composition dependence on the martensitic structures of the Mn-rich NiMnGa alloys. Acta Mater 52:2779–2785

  56. 56.

    Hu Q-M, Li C-M, Kulkova SE, Yang R, Johansson B, Vitos L (2010) Magnetoelastic effects in Ni2Mn1+xGa1−x alloys from first-principles calculations. Phys Rev B 81:064108

  57. 57.

    Holec D, Tasnádi F, Wagner P, Friák M, Neugebauer J, Mayrhofer PH, Keckes J (2014) Macroscopic elastic properties of textured ZrN-AlN polycrystalline aggregates: from ab initio calculations to grain-scale interactions. Phys Rev B 90:184106

  58. 58.

    Vitos L (2007) Computational quantum mechanics for materials engineers. Springer, London

  59. 59.

    Zelený M, Sozinov A, Straka L, Björkman T, Nieminen RM (2014) First-principles study of Co- and Cu-doped Ni2MnGa along the tetragonal deformation path. Phys Rev B 89:184103

  60. 60.

    Mouhat F, Coudert FX (2014) Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B 90:224104

  61. 61.

    Moakher M, Norris AN (2006) The closest elastic tensor of arbitrary symmetry to an elasticity tensor of lower symmetry. J Elastom 85:215–263

  62. 62.

    Worgull J, Petti E, Trivisonno J (1996) Behavior of the elastic properties near an intermediate phase transition in Ni2MnGa. Phys Rev B 54:15695–15699

  63. 63.

    Stipcich M, Mañosa L, Planes A, Morin M, Zarestky J, Lograsso T, Stassis C (2004) Elastic constants of Ni−Mn−Ga magnetic shape memory alloys. Phys Rev B 70:054115

  64. 64.

    Bungaro C, Rabe KM, Dal Corso A (2003) First-principles study of lattice instabilities in ferromagnetic Ni2MnGa. Phys Rev B 68:134104

  65. 65.

    Hu Q-M, Li C-M, Yang R, Kulkova SE, Johansson B, Bazhanov DI, Vitos L (2009) Site occupancy, magnetic moments, and elastic constants of off-stoichiometric Ni2MnGa from first-principles calculations. Phys Rev B 79:144112

  66. 66.

    Ozdemir Kart S, Cagın T (2010) Elastic properties of Ni2MnGa from first-principles calculations. J Alloys Compd 508:177–183

  67. 67.

    Sedlák P, Seiner H, Bodnárová L, Heczko O, Landa M (2017) Elastic constants of non-modulated Ni-Mn-Ga martensite. Scr Mater 136:20–23

  68. 68.

    Zayak AT, Entel P, Enkovaara J, Ayuela A, Nieminen R (2003) First-principles investigation of phonon softenings and lattice instabilities in the shape-memory system Ni2MnGa. Phys Rev B 68:132402

  69. 69.

    Entel P et al (2006) Modelling the phase diagram of magnetic shape memory Heusler alloys. J Phys D 39:865–889

  70. 70.

    Zayak AT, Adeagbo WA, Entel P, Rabe KM (2006) e/a dependence of the lattice instability of cubic Heusler alloys from first principles. Appl Phys Lett 88:111903

  71. 71.

    Zayak AT, Entel P, Rabe KM, Adeagbo WA, Acet M (2005) Crystal structures of Ni2MnGa from density functional calculations. Phys Rev B 72:054113

  72. 72.

    Fujii S, Ishida S, Asano S (1989) Electronic structure and lattice transformation in Ni2MnGa and Co2NbSn. J Phys Soc Japan 58:3657–3665

  73. 73.

    Brown PJ, Bargawi AY, Crangle J, Neumann KU, Ziebeck KRA (1999) Direct observation of a band Jahn-Teller effect in the martensitic phase transition of Ni2MnGa. J Phys Condens Matter 11:4715–4722

Download references

Acknowledgements

We thank Alexei Sozinov for fruitful discussions. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the Program OP VVV “Excellent Research Teams” under Project CZ.02.1.01/0.0/0.0/15_003/0000487-MATFUN, by the Large Infrastructures for Research, Experimental Development and Innovations project “IT4Innovations National Supercomputing Center-LM2015070” and by the Czech Science Foundation under Project No. 17-00062S. D. H. and M. Z. are also grateful for the financial support through Scientific & Technological Cooperation of the Austrian Agency for International Cooperation in Education and Research (WTZ-CZ-06/8J18AT004). M. Z. also acknowledges support from the Czech-Austrian scholarship program AKTION (Contract No. ICM-2017-09370).

Author information

Correspondence to Martin Zelený.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited submission to Shape Memory and Superelasticity selected from presentations at the International Conference on Ferromagnetic Shape Memory Alloys (ICFSMA) held June 2–7, 2019 in Prague, Czech Republic, and has been expanded from the original presentation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zelený, M., Heczko, M., Janovec, J. et al. The Effect of Local Arrangement of Excess Mn on Phase Stability in Ni–Mn–Ga Martensite: An Ab Initio Study. Shap. Mem. Superelasticity (2019). https://doi.org/10.1007/s40830-019-00247-0

Download citation

Keywords

  • Ni–Mn–Ga
  • Magnetic shape memory
  • Martensitic transformation
  • Elastic properties
  • Ab initio calculation