Prediction of NiTi B19′ Martensite Twin Activation Below a Spherical Indenter Tip

  • Martin F.-X. WagnerEmail author
  • S. Pfeiffer


The mechanical behavior of pseudoelastic NiTi is strongly affected by the properties of its twinned martensitic microstructures, which has been recently demonstrated by observations of an anisotropic material response during nanoindentation. In this paper, we apply the phenomenological theory of martensitic transformations to the multi-axial load case under a spherical indenter tip. We first calculate the elastic stress fields that trigger the martensitic transformation in anisotropic, linear-elastic finite element simulations. For <100>, <110>, and <111> surface orientations of a single NiTi austenite grain, likely nucleation sites and the activated martensite correspondence variant pairs are then predicted. We further estimate the transformed martensitic volume and the resulting surface topography. In excellent agreement with recent experiments, four-, two-, and three-fold symmetries of the indents are observed; the <111> orientation shows the largest and the <110> orientation the smallest activated martensite volume. The tilt angles of the martensitic surface facets are about 1°, 5°, and 7° for the <100>, <110>, and <111> orientations. Our results clearly highlight that dedicated anisotropic calculations in combination with a simple martensite twin selection criterion can be used to characterize the properties of small sample volumes subjected to the stress-induced martensitic transformation even under complex loading.


NiTi Pseudoelasticity Nanoindentation Anisotropy Martensite twin variant selection 



The authors would like to thank Prof. Guillaume Laplanche for many fruitful discussions and for providing the SEM image that embodies a most exciting experimental result. Part of this work was funded in the framework of DFG project FA 453/13-1.


  1. 1.
    Ferrari A, Paulsen A, Frenzel J, Rogal J, Eggeler G, Drautz R (2018) Unusual composition dependence of transformation temperatures in Ti-Ta-X shape memory alloys. Phys Rev Mater 2:73609. CrossRefGoogle Scholar
  2. 2.
    Santamarta R, Arróyave R, Pons J, Evirgen A, Karaman I, Karaca HE, Noebe RD (2013) TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni–Ti–Hf and Ni–Ti–Zr shape memory alloys. Acta Mater 61:6191–6206. CrossRefGoogle Scholar
  3. 3.
    Duerig T, Pelton A, Stöckel D (1999) An overview of nitinol medical applications. Mater Sci Eng A 273–275:149–160. CrossRefGoogle Scholar
  4. 4.
    Wagner M, Richter J, Frenzel J, Grönemeyer D, Eggeler G (2004) Design of a medical non-linear drilling device: the influence of twist and wear on the fatigue behaviour of NiTi wires subjected to bending rotation. Materwiss Werksttech 35:320–325. CrossRefGoogle Scholar
  5. 5.
    Krone L, Mentz J, Bram M, Buchkremer H-P, Stöver D, Wagner M, Eggeler G, Christ D, Reese S, Bogdanski D, Köller M, Esenwein SA, Muhr G, Prymak O, Epple M (2005) The potential of powder metallurgy for the fabrication of biomaterials on the basis of nickel-titanium: a case study with a staple showing shape memory behaviour. Adv Eng Mater 7:613–619. CrossRefGoogle Scholar
  6. 6.
    Spenciner DB, Scutti JJ (2018) The effect of nitinol on medical device innovation. In: Titanium in medical and dental applications. Woodhead Publishing, Sawston, pp 571–582CrossRefGoogle Scholar
  7. 7.
    Duerig T (2018) The metallurgy of nitinol as it pertains to medical devices. In: Titanium in medical and dental applications. Woodhead Publishing, Sawston, pp 555–570CrossRefGoogle Scholar
  8. 8.
    Undisz A, Reuther K, Reuther H, Rettenmayr M (2011) Occurrence and origin of non-martensitic acicular artifacts on NiTi. Acta Mater 59:216–224. CrossRefGoogle Scholar
  9. 9.
    Khalil-Allafi J, Hasse B, Klönne M, Wagner M, Pirling T, Predki W, Schmahl WW (2004) In-situ diffraction investigation of superelastic NiTi shape memory alloys under mechanical stress with neutrons and with synchrotron radiation. Materwiss Werksttech 35:280–283. CrossRefGoogle Scholar
  10. 10.
    Otsuka K, Ren X (2005) Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci 50:511–678. CrossRefGoogle Scholar
  11. 11.
    Wang X, Kustov S, Li K, Schryvers D, Verlinden B, van Humbeeck J (2015) Effect of nanoprecipitates on the transformation behavior and functional properties of a Ti–50.8 at.% Ni alloy with micron-sized grains. Acta Mater 82:224–233. CrossRefGoogle Scholar
  12. 12.
    Wagner MF-X, Eggeler G (2006) New aspects of bending rotation fatigue in ultra-fine-grained pseudo-elastic NiTi wires. Int J Mater Res 97:1687–1696CrossRefGoogle Scholar
  13. 13.
    Jaureguizahar SM, Chapetti MD, Yawny A (2018) A novel experimental method to assess the fatigue behavior of pseudoelastic NiTi wires. Int J Fatigue 116:300–305. CrossRefGoogle Scholar
  14. 14.
    Mahtabi MJ, Stone TW, Shamsaei N (2018) Load sequence effects and variable amplitude fatigue of superelastic NiTi. Int J Mech Sci 148:307–315. CrossRefGoogle Scholar
  15. 15.
    Zhang K, Kang G, Sun Q (2019) High fatigue life and cooling efficiency of NiTi shape memory alloy under cyclic compression. Scr Mater 159:62–67. CrossRefGoogle Scholar
  16. 16.
    Reedlunn B, Churchill CB, Nelson EE et al (2014) Tension, compression, and bending of superelastic shape memory alloy tubes. J Mech Phys Solids 63:506–537. CrossRefGoogle Scholar
  17. 17.
    Wagner MF-X, Eggeler G (2006) Stress and strain states in a pseudoelastic wire subjected to bending rotation. Mech Mater 38:1012–1025. CrossRefGoogle Scholar
  18. 18.
    Elibol C, Wagner MF-X (2015) Investigation of the stress-induced martensitic transformation in pseudoelastic NiTi under uniaxial tension, compression and compression-shear. Mater Sci Eng A 621:76–81. CrossRefGoogle Scholar
  19. 19.
    Bechle NJ, Kyriakides S (2016) Evolution of localization in pseudoelastic NiTi tubes under biaxial stress states. Int J Plast 82:1–31. CrossRefGoogle Scholar
  20. 20.
    Mutter D, Nielaba P (2013) Simulation of the shape memory effect in a NiTi nano model system. J Alloys Compd 577:S83–S87. CrossRefGoogle Scholar
  21. 21.
    Paul PP, Paranjape HM, Amin-Ahmadi B, Stebner A, Dunand DC, Brinson LC (2017) Effect of machined feature size relative to the microstructural size on the superelastic performance in polycrystalline NiTi shape memory alloys. Mater Sci Eng A 706:227–235. CrossRefGoogle Scholar
  22. 22.
    Ye J, Mishra RK, Pelton AR, Minor AM (2010) Direct observation of the NiTi martensitic phase transformation in nanoscale volumes. Acta Mater 58:490–498. CrossRefGoogle Scholar
  23. 23.
    Heinen R, Hackl K, Windl W, Wagner MF-X (2009) Microstructural evolution during multiaxial deformation of pseudoelastic NiTi studied by first-principles-based micromechanical modeling. Acta Mater 57:3856–3867. CrossRefGoogle Scholar
  24. 24.
    Paranjape HM, Paul PP, Sharma H, Kenesei P, Park JS, Duerig TW, Brinson LC, Stebner AP (2017) Influences of granular constraints and surface effects on the heterogeneity of elastic, superelastic, and plastic responses of polycrystalline shape memory alloys. J Mech Phys Solids 102:46–66. CrossRefGoogle Scholar
  25. 25.
    Sehitoglu H, Karaman I, Anderson R, Zhang X, Gall K, Maier HJ, Chumlyakov Y (2000) Compressive response of NiTi single crystals. Acta Mater 48:3311–3326. CrossRefGoogle Scholar
  26. 26.
    Pfeiffer S, Wagner MF-X (2017) Elastic deformation of twinned microstructures. Proc R Soc A 473:20170330. CrossRefGoogle Scholar
  27. 27.
    Wang J, Sehitoglu H (2014) Martensite modulus dilemma in monoclinic NiTi-theory and experiments. Int J Plast 61:17–31. CrossRefGoogle Scholar
  28. 28.
    Uchic MD, Dimiduk DM, Florando JN, Nix WD (2004) Sample dimensions influence strength and crystal plasticity. Science 305:986–989. CrossRefGoogle Scholar
  29. 29.
    Uchic MD, Shade PA, Dimiduk DM (2009) Plasticity of micrometer-scale single crystals in compression. Annu Rev Mater Res 39:361–386. CrossRefGoogle Scholar
  30. 30.
    Greer JR, De Hosson JTM (2011) Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog Mater Sci 56:654–724. CrossRefGoogle Scholar
  31. 31.
    Weinberger CR, Cai W (2008) Surface-controlled dislocation multiplication in metal micropillars. Proc Natl Acad Sci USA 105:14304–14307. CrossRefGoogle Scholar
  32. 32.
    Arzt E (1998) Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater 46:5611–5626. CrossRefGoogle Scholar
  33. 33.
    Ueland SM, Schuh CA (2013) Grain boundary and triple junction constraints during martensitic transformation in shape memory alloys. J Appl Phys 114:053503. CrossRefGoogle Scholar
  34. 34.
    Ueland SM, Schuh CA (2013) Transition from many domain to single domain martensite morphology in small-scale shape memory alloys. Acta Mater 61:5618–5625. CrossRefGoogle Scholar
  35. 35.
    Hahn S, Wagner MF-X (2016) Challenges during microstructural analysis and mechanical testing of small-scale pseudoelastic NiTi structures. Shape Mem Superelast 2:171–179. CrossRefGoogle Scholar
  36. 36.
    San Juan J, Nó ML, Schuh CA (2012) Superelastic cycling of Cu–Al–Ni shape memory alloy micropillars. Acta Mater 60:4093–4106. CrossRefGoogle Scholar
  37. 37.
    San Juan S, Nó ML, Schuh CA (2009) Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat Nanotechnol 4:415–419. CrossRefGoogle Scholar
  38. 38.
    Norfleet DM, Sarosi PM, Manchiraju S, Wagner MF-X, Uchic MD, Anderson PM, Mills MJ (2009) Transformation-induced plasticity during pseudoelastic deformation in Ni-Ti microcrystals. Acta Mater 57:3549–3561. CrossRefGoogle Scholar
  39. 39.
    Pfetzing-Micklich J, Ghisleni R, Simon T, Somsen C, Michler J, Eggeler G (2012) Orientation dependence of stress-induced phase transformation and dislocation plasticity in NiTi shape memory alloys on the micro scale. Mater Sci Eng A 538:265–271. CrossRefGoogle Scholar
  40. 40.
    Gu H, Bumke L, Chluba C et al (2018) Phase engineering and supercompatibility of shape memory alloys. Mater Today 21:265–277. CrossRefGoogle Scholar
  41. 41.
    Ossmer H, Miyazaki S, Kohl M (2015) The elastocaloric effect in TiNi-based foils. Mater Today Proc 2:S971–S974. CrossRefGoogle Scholar
  42. 42.
    Frick CP, Lang TW, Spark K, Gall K (2006) Stress-induced martensitic transformations and shape memory at nanometer scales. Acta Mater 54:2223–2234. CrossRefGoogle Scholar
  43. 43.
    Niemann R, Hahn S, Diestel A, Backen A, Schultz L, Nielsch K, Wagner MF-X, Fähler S (2016) Reducing the nucleation barrier in magnetocaloric Heusler alloys by nanoindentation. APL Mater 4:064101. CrossRefGoogle Scholar
  44. 44.
    Gall K, Juntunen K, Maier HJ, Sehitoglu H, Chumlyakov YI (2001) Instrumented micro-indentation of NiTi shape-memory alloys. Acta Mater 49:3205–3217. CrossRefGoogle Scholar
  45. 45.
    Shastry VV, Divya VD, Azeem MA, Paul A, Dye D, Ramamurty U (2013) Combining indentation and diffusion couple techniques for combinatorial discovery of high temperature shape memory alloys. Acta Mater 61:5735–5742. CrossRefGoogle Scholar
  46. 46.
    Pfetzing-Micklich J, Wagner MF-X, Zarnetta R, Frenzel J, Eggeler G, Markaki AE, Wheeler J, Clyne TW (2010) Nanoindentation of a pseudoelastic NiTiFe shape memory alloy. Adv Eng Mater 12:13–19. CrossRefGoogle Scholar
  47. 47.
    Pfetzing J, Schaefer A, Somsen C, Wagner MF-X (2009) Nanoindentation of pseudoelastic NiTi shape memory alloys: thermomechanical and microstructural aspects. Int J Mater Res 100:936–942. CrossRefGoogle Scholar
  48. 48.
    Kumar SS, Marandi L, Balla VK, Bysakh S, Piorunek D, Eggeler G, Das M, Sen I (2019) Microstructure—property correlations for additively manufactured NiTi based shape memory alloys. Materialia 8:100456. CrossRefGoogle Scholar
  49. 49.
    Carmine M, Fabrizio N, Emanuele S, Franco F (2017) Analysis of fatigue damage in shape memory alloys by nanoindentation. Mater Sci Eng A 684:335–343. CrossRefGoogle Scholar
  50. 50.
    Xia M, Liu P, Sun Q (2018) Grain size dependence of Young’s modulus and hardness for nanocrystalline NiTi shape memory alloy. Mater Lett 211:352–355. CrossRefGoogle Scholar
  51. 51.
    Pfetzing-Micklich J, Somsen C, Dlouhy A, Begau C, Hartmaier A, Wagner MF-X, Eggeler G (2013) On the crystallographic anisotropy of nanoindentation in pseudoelastic NiTi. Acta Mater 61:602–616. CrossRefGoogle Scholar
  52. 52.
    Laplanche G, Pfetzing-Micklich J, Eggeler G (2014) Orientation dependence of stress-induced martensite formation during nanoindentation in NiTi shape memory alloys. Acta Mater 68:19–31. CrossRefGoogle Scholar
  53. 53.
    Laplanche G, Pfetzing-Micklich J, Eggeler G (2014) Sudden stress-induced transformation events during nanoindentation of NiTi shape memory alloys. Acta Mater 78:144–160. CrossRefGoogle Scholar
  54. 54.
    Wagner MF-X (2010) Microstructural and mechanical challenges in biomedical NiTi. J Phys Conf Ser 240:012004. CrossRefGoogle Scholar
  55. 55.
    Bhattacharya K (2003) Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press, OxfordGoogle Scholar
  56. 56.
    Waitz T, Karnthaler HP (2004) Martensitic transformation of NiTi nanocrystals embedded in an amorphous matrix. Acta Mater 52:5461–5469. CrossRefGoogle Scholar
  57. 57.
    Waitz T, Antretter T, Fischer FD, Simha NK, Karnthaler HP (2007) Size effects on the martensitic phase transformation of NiTi nanograins. J Mech Phys Solids 55:419–444. CrossRefGoogle Scholar
  58. 58.
    Christian JW, Mahajan S (1995) Deformation twinning. Prog Mater Sci 39:1–157. CrossRefGoogle Scholar
  59. 59.
    Gall K, Sehitoglu H, Chumlyakov YI, Kireeva IV (1999) Tension–compression asymmetry of the stress–strain response in aged single crystal and polycrystalline NiTi. Acta Mater 47:1203–1217. CrossRefGoogle Scholar
  60. 60.
    Buchheit TE, Wert JA (1996) Predicting the orientation-dependent stress-induced transformation and detwinning response of shape memory alloy single crystals. Metall Mater Trans A 27:269–279. CrossRefGoogle Scholar
  61. 61.
    Huber MT (1904) Zur theorie der Berührung fester elastischer Körper. Ann Phys 319:153–163. CrossRefGoogle Scholar
  62. 62.
    Wagner MF-X, Windl W (2008) Lattice stability, elastic constants and macroscopic moduli of NiTi martensites from first principles. Acta Mater 56:6232–6245. CrossRefGoogle Scholar
  63. 63.
    Fischer-Cripps AC (2007) Introduction to contact mechanics. Springer, New YorkCrossRefGoogle Scholar
  64. 64.
    Pfeiffer S (2019) Mikromechanische Modellbildung und Finite-Elemente-Simulation zur elastischen Anisotropie von verzwillingten NiTi-Martensiten (in German), Micromechanical modeling and finite element simulations on elastic anisotropy of twinned NiTi martensites, Ph.D. Thesis, available from TU Chemnitz Library, Germany. Thesis completed February 2019.Google Scholar
  65. 65.
    Miyazaki S, Otsuka K, Wayman CM (1989) The shape memory mechanism associated with the martensitic transformation in TiNi alloys—I. Self-accommodation. Acta Metall 37:1873–1884. CrossRefGoogle Scholar
  66. 66.
    Miyazaki S, Otsuka K, Wayman CM (1989) The shape memory mechanism associated with the martensitic transformation in TiNi alloys—II. Variant coalescence and shape recovery. Acta Metall 37:1885–1890. CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Chair of Materials Science, Institute of Materials Science and EngineeringTU ChemnitzChemnitzGermany
  2. 2.thyssenkrupp Presta Chemnitz GmbHChemnitzGermany

Personalised recommendations