Advertisement

Influence of Cr Alloying (1.5 to 5 at.%) on Martensitic Phase Transformation Temperatures in Co-Ni-Ga-Cr Thin Films

  • Peer DeckerEmail author
  • Jill Fortmann
  • Steffen Salomon
  • Philipp Krooß
  • Thomas Niendorf
  • Alfred Ludwig
SPECIAL ISSUE: HTSMA 2018, INVITED PAPER HTSMA

Abstract

A Co-Ni-Ga-Cr thin film materials library with a Cr concentration gradient ranging from 1.5 at.% to 5 at.% was magnetron-sputtered to determine the influence of Cr additions on the martensite transformation temperature of non-stoichiometric Co2NiGa-based Heusler alloys. An increase of the phase transformation temperature from 30 °C for 5 at.% Cr up to 100 °C for 1.5 at.% Cr was determined by a peak fitting analysis of temperature-dependent X-ray diffraction data.

Keywords

X-ray diffraction Thin films Combinatorial materials science Martensite phase transformation Sputtering CoNiGa 

Notes

Acknowledgements

Financial support is gratefully acknowledged by the Deutsche Forschungsgemeinschaft (DFG) within the Research Unit Program “Hochtemperatur-Formgedächtnislegierungen” (Project No. 200999873; Project Nos. LU1175/11-2; NI1327/3-2).

References

  1. 1.
    Ullakko K, Huang JK, Kokorin VV et al (1997) Magnetically controlled shape memory effect in Ni2MnGa intermetallics. Scr Mater 36(10):1133–1138.  https://doi.org/10.1016/S1359-6462(96)00483-6 CrossRefGoogle Scholar
  2. 2.
    Dai Y, Hou L, Fautrelle Y et al (2017) Martensitic transformation and detwinning in directionally solidified two-phase Ni-Mn-Ga alloys under uniaxial compression. J Alloy Compd 722:721–728.  https://doi.org/10.1016/j.jallcom.2017.06.129 CrossRefGoogle Scholar
  3. 3.
    Ullakko K, Huang JK, Kantner C et al (1996) Large magnetic-field-induced strains in Ni 2 MnGa single crystals. Appl Phys Lett 69(13):1966–1968.  https://doi.org/10.1063/1.117637 CrossRefGoogle Scholar
  4. 4.
    Pons J, Cesari E, Seguí C et al (2008) Ferromagnetic shape memory alloys: alternatives to Ni-Mn-Ga. Mater Sci Eng A 481–482:57–65.  https://doi.org/10.1016/j.msea.2007.02.152 CrossRefGoogle Scholar
  5. 5.
    Oikawa K, Wulff L, Iijima T et al (2001) Promising ferromagnetic Ni-Co-Al shape memory alloy system. Appl Phys Lett 79(20):3290–3292.  https://doi.org/10.1063/1.1418259 CrossRefGoogle Scholar
  6. 6.
    Oikawa K, Ota T, Imano Y et al (2006) Phase equilibria and phase transformation of Co–Ni–Ga ferromagnetic shape memory alloy system. JPED 27(1):75–82.  https://doi.org/10.1361/105497106X92835 CrossRefGoogle Scholar
  7. 7.
    Ducher R, Kainuma R, Ishida K (2008) Phase equilibria in the Ni–Co–Ga alloy system. J Alloy Compd 466(1–2):208–213.  https://doi.org/10.1016/j.jallcom.2007.11.103 CrossRefGoogle Scholar
  8. 8.
    Wuttig M, Li J, Craciunescu C (2001) A new ferromagnetic shape memory alloy system. Scr Mater 44(10):2393–2397.  https://doi.org/10.1016/S1359-6462(01)00939-3 CrossRefGoogle Scholar
  9. 9.
    Dadda J, Maier HJ, Karaman I et al (2006) Pseudoelasticity at elevated temperatures in [001] oriented Co49Ni21Ga30 single crystals under compression. Scr Mater 55(8):663–666.  https://doi.org/10.1016/j.scriptamat.2006.07.005 CrossRefGoogle Scholar
  10. 10.
    Dadda J, Maier HJ, Niklasch D et al (2008) Pseudoelasticity and cyclic stability in Co49Ni21Ga30 shape-memory alloy single crystals at ambient temperature. Metall Mater Trans A 39(9):2026–2039.  https://doi.org/10.1007/s11661-008-9543-0 CrossRefGoogle Scholar
  11. 11.
    Krooß P, Kadletz PM, Somsen C et al (2016) Cyclic degradation of Co49Ni21Ga30 high-temperature shape memory alloy: on the roles of dislocation activity and chemical order. Shap Mem Superelasticity 2(1):37–49.  https://doi.org/10.1007/s40830-015-0049-5 CrossRefGoogle Scholar
  12. 12.
    Ma J, Karaman I, Noebe RD (2013) High temperature shape memory alloys. Int Mater Rev 55(5):257–315.  https://doi.org/10.1179/095066010X12646898728363 CrossRefGoogle Scholar
  13. 13.
    Krooß P, Niendorf T, Kadletz PM et al (2015) Functional fatigue and tension-compression asymmetry in [001]-oriented Co49Ni21Ga30 high-temperature shape memory alloy single crystals. Shap Mem Superelasticity 1(1):6–17.  https://doi.org/10.1007/s40830-015-0003-6 CrossRefGoogle Scholar
  14. 14.
    Likhachev AA, Ullakko K (2000) Magnetic-field-controlled twin boundaries motion and giant magneto-mechanical effects in Ni-Mn-Ga shape memory alloy. Phys Lett A 275(1–2):142–151.  https://doi.org/10.1016/S0375-9601(00)00561-2 CrossRefGoogle Scholar
  15. 15.
    Liu J, Zheng HX, Xia MX et al (2005) The microstructure and martensitic transformation of Co-Ni-Ga-Ta ferromagnetic shape memory alloys. Scr Mater 52(10):955–958.  https://doi.org/10.1016/j.scriptamat.2005.01.041 CrossRefGoogle Scholar
  16. 16.
    El-Bagoury N, Kaseem MAW (2015) Characterization of microstructure and magnetic and mechanical properties of cast dual-phase CoNiGaAl shape memory alloy. Metallogr Microstruct Anal 4(5):403–410.  https://doi.org/10.1007/s13632-015-0218-0 CrossRefGoogle Scholar
  17. 17.
    Ludwig A, Zarnetta R, Hamann S et al (2008) Development of multifunctional thin films using high-throughput experimentation methods. Int J Mater Res 99(10):1144–1149.  https://doi.org/10.3139/146.101746 CrossRefGoogle Scholar
  18. 18.
    Zarnetta R, König D, Zamponi C et al (2009) R-phase formation in Ti39Ni45Cu16 shape memory thin films and bulk alloys discovered by combinatorial methods. Acta Mater 57(14):4169–4177.  https://doi.org/10.1016/j.actamat.2009.05.014 CrossRefGoogle Scholar
  19. 19.
    König D, Zarnetta R, Savan A et al (2011) Phase transformation, structural and functional fatigue properties of Ti-Ni-Hf shape memory thin films. Acta Mater 59(8):3267–3275.  https://doi.org/10.1016/j.actamat.2011.01.066 CrossRefGoogle Scholar
  20. 20.
    Kock I, Hamann S, Brunken H et al (2010) Development and characterization of Fe70Pd30 ferromagnetic shape memory splats. Intermetallics 18(5):877–882.  https://doi.org/10.1016/j.intermet.2009.12.019 CrossRefGoogle Scholar
  21. 21.
    Buenconsejo PJS, Ludwig A (2015) New Au-Cu-Al thin film shape memory alloys with tunable functional properties and high thermal stability. Acta Mater 85:378–386.  https://doi.org/10.1016/j.actamat.2014.11.035 CrossRefGoogle Scholar
  22. 22.
    Kadletz PM, Motemani Y, Iannotta J et al (2018) Crystallographic structure analysis of a Ti-Ta thin film materials library fabricated by combinatorial magnetron sputtering. ACS Comb Sci 20(3):137–150.  https://doi.org/10.1021/acscombsci.7b00135 CrossRefGoogle Scholar
  23. 23.
    Wang X, Rogalla D, Ludwig A (2018) Influences of W content on the phase transformation properties and the associated stress change in thin film substrate combinations studied by fabrication and characterization of thin film V1-xW xO2 materials libraries. ACS Comb Sci 20(4):229–236.  https://doi.org/10.1021/acscombsci.7b00192 CrossRefGoogle Scholar
  24. 24.
    Thienhaus S, Hamann S, Ludwig A (2011) Modular high-throughput test stand for versatile screening of thin-film materials libraries. Sci Technol Adv Mater 12(5):054206.  https://doi.org/10.1088/1468-6996/12/5/054206 CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Peer Decker
    • 1
    Email author
  • Jill Fortmann
    • 1
  • Steffen Salomon
    • 1
  • Philipp Krooß
    • 2
  • Thomas Niendorf
    • 2
  • Alfred Ludwig
    • 1
  1. 1.Institute for MaterialsRuhr UniversityBochumGermany
  2. 2.Metallic Materials, Institute for Materials EngineeringUniversity of KasselKasselGermany

Personalised recommendations