Advertisement

Shape Memory and Superelasticity

, Volume 4, Issue 4, pp 411–416 | Cite as

SMA Constitutive Modeling Backed Up by 3D-XRD Experiments: Transformation Front in Stretched NiTi Wire

  • M. Frost
  • P. Sedlák
  • P. Sedmák
  • L. Heller
  • P. Šittner
Article
  • 74 Downloads

Abstract

It has been known for a long time that martensitic phase transformation in NiTi shape memory alloys loaded in tension develops inhomogeneously via formation and propagation of macroscopic deformation bands resembling well-known Lüders bands. Growing literature evidence supports the view that NiTi, in fact, develops a variety of localized deformation phenomena in particular geometries and loading modes. Coupling of cutting-edge experimental methods with dedicated modeling techniques can bring new insight into such a type of behavior. In this short review of our recent study, we demonstrate this synergic approach on the investigation of the martensite band in a stretched NiTi superelastic wire, in which the advanced technique of three-dimensional X-ray diffraction was complemented by NiTi-tailored constitutive model. We focus mainly on the modeling part, but the experimental background motivating and validating the chosen numerical approach is also briefly presented.

Keywords

Constitutive model Localized deformation Numerical simulation NiTi 3D XRD 

Notes

Acknowledgements

This study has been financially supported by the Czech Science Foundation via Project No. GA18-03834S and by the OP RDE, MEYS within the Project ESS SCANDINAVIA CZ.02.1.01/0.0/0.0/16_013/0001794. P. Sedmák thanks the European Synchrotron Radiation Facility for the provision of the Ph.D. grant.

References

  1. 1.
    Sylwestrowicz W, Hall EO (1951) The deformation and ageing of mild steel. Proc Phys Soc Lond Sect B 64:495–502CrossRefGoogle Scholar
  2. 2.
    Šittner P, Sedlák P, Landa M, Novák V, Lukáš P (2006) In situ experimental evidence on R-phase related deformation processes in activated NiTi wires. Mater Sci Eng A 438–440:579–584CrossRefGoogle Scholar
  3. 3.
    Thomasová M, Seiner H, Sedlák P, Frost M, Sevčík M, Szurman I, Kocich R, Drahokoupil J, Šittner P, Landa M (2017) Evolution of macroscopic elastic moduli of martensitic polycrystalline NiTi and NiTiCu shape memory alloys with pseudoplastic straining. Acta Mater 123:146–156CrossRefGoogle Scholar
  4. 4.
    Xiao Y, Zeng P, Lei L (2017) Grain size effect on mechanical performance of nanostructured superelastic NiTi alloy. Mater Res Express 4:035702CrossRefGoogle Scholar
  5. 5.
    Xiao Y, Zeng P, Lei L, Zhang Y (2017) In situ observation on temperature dependence of martensitic transformation and plastic deformation in superelastic NiTi shape memory alloy. Mater Des 134:111–120CrossRefGoogle Scholar
  6. 6.
    Shaw JA, Kyriakides S (1997) On the nucleation and propagation of phase transformation fronts in a NiTi alloy. Acta Mater 45(2):683–700CrossRefGoogle Scholar
  7. 7.
    Sun QP, Li ZQ (2002) Phase transformation in superelastic NiTi polycrystalline micro-tubes under tension and torsion—from localization to homogeneous deformation. Int J Solids Struct 39:3797–3809CrossRefGoogle Scholar
  8. 8.
    Reedlunn B, Churchill CB, Nelson EE, Shaw JA, Daly SH (2014) Tension, compression, and bending of superelastic shape memory alloy tubes. J Mech Phys Solids 63:506–537CrossRefGoogle Scholar
  9. 9.
    Elibol C, Wagner MF-X (2015) Investigation of the stress-induced martensitic transformation in pseudoelastic NiTi under uniaxial tension, compression and compression-shear. Mater Sci Eng A 621:76–81CrossRefGoogle Scholar
  10. 10.
    Pieczyska EA, Tobushi H, Kulasinski K (2013) Development of transformation bands in TiNi SMA for various stress and strain rates studied by a fast and sensitive infrared camera. Smart Mater Struct 22:035007CrossRefGoogle Scholar
  11. 11.
    Xiao Y, Zeng P, Lei L (2016) Experimental observations on mechanical response of three-phase NiTi shape memory alloy under uniaxial tension. Mater Res Express 3:105701CrossRefGoogle Scholar
  12. 12.
    Šittner P, Liu Y, Novák V (2005) On the origin of lüders-like deformation of NiTi shape memory alloys. J Mech Phys Solids 53:1719–1746CrossRefGoogle Scholar
  13. 13.
    Zheng L, He Y, Moumni Z (2016) Effects of Lüders-like bands on NiTi fatigue behaviors. Int J Solids Struct 83:28–44CrossRefGoogle Scholar
  14. 14.
    Mohd Jani J, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113CrossRefGoogle Scholar
  15. 15.
    Frost M, Sedlák P, Kruisová A, Landa M (2014) Simulations of self-expanding braided stent using macroscopic model of NiTi shape memory alloys covering R-phase. J Mater Eng Perform 23:2584–2590CrossRefGoogle Scholar
  16. 16.
    Racek J, Stora M, Šittner P, Heller L, Kopeček J, Petrenec M (2015) Monitoring tensile fatigue of superelastic NiTi wire in liquids by electrochemical potential. Shape Mem Superelasticity 1:204–230CrossRefGoogle Scholar
  17. 17.
    Sedmák P, Pilch J, Heller L, Kopeček J, Wright J, Sedlák P, Frost M, Šittner P (2016) Grain-resolved analysis of localized deformation in nickel-titanium wire under tensile load. Science 353(6299):559–562CrossRefGoogle Scholar
  18. 18.
    Chang BC, Shaw JA, Iadicola MA (2006) Thermodynamics of shape memory alloy wire: modeling, experiments, and application. Contin Mech Thermodyn 18:83–118CrossRefGoogle Scholar
  19. 19.
    Iadicola MA, Shaw JA (2004) Rate and thermal sensitivities of unstable transformation behavior in a shape memory alloy. Int J Plasticity 20:577–605CrossRefGoogle Scholar
  20. 20.
    Hallai JF, Kyriakides S (2013) Underlying material response for Lüders-like instabilities. Int J Plasticity 47:1–12CrossRefGoogle Scholar
  21. 21.
    Duval A, Haboussi M, Ben Zineb T (2011) Modelling of localization and propagation of phase transformation in superelastic SMA by a gradient nonlocal approach. Int J Solids Struct 48:1879–1893CrossRefGoogle Scholar
  22. 22.
    Chemisky Y, Duval A, Patoor E, Ben Zineb T (2011) Constitutive model for shape memory alloys including phase transformation, martensitic reorientation and twins accommodation. Mech Mater 43:361–376CrossRefGoogle Scholar
  23. 23.
    Armattoe KM, Haboussi M, Ben Zineb T (2014) A 2D finite element based on a nonlocal constitutive model describing localization and propagation of phase transformation in shape memory alloy thin structures. Int J Solids Struct 51:1208–1220CrossRefGoogle Scholar
  24. 24.
    Tabesh M, Boyd J, Lagoudas D (2014) A gradient-based constitutive model for shape memory alloys. Shape Mem Superelasticity 3:84–108CrossRefGoogle Scholar
  25. 25.
    Badnava H, Kadkhodaei M, Mashayekhi M (2014) A non-local implicit gradient-enhanced model for unstable behaviors of pseudoelastic shape memory alloys in tensile loading. Int J Solids Struct 51:4015–4025CrossRefGoogle Scholar
  26. 26.
    Frost M, Sedlák P, Ben Zineb T (2018) Experimental observations and modeling of localization in superelastic NiTi polycrystalline alloys: state of the art. Acta Phys Pol A 134 (accepted for publication)Google Scholar
  27. 27.
    Sedlák P, Frost M, Benešová B, Šittner P, Ben Zineb T (2012) Thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings. Int J Plasticity 39:132–151CrossRefGoogle Scholar
  28. 28.
    Frost M, Kruisová A, Sháněl V, Sedlák P, Haušild P, Kabla M, Shilo D, Landa M (2015) Characterization of superelastic NiTi alloys by nanoindentation: experiments and simulations. Acta Phys Pol A 128:664–669CrossRefGoogle Scholar
  29. 29.
    Frost M, Benešová B, Sedlák P (2016) A microscopically motivated constitutive model for shape memory alloys: formulation, analysis and computations. Mater Mech Solids 21:358–382CrossRefGoogle Scholar
  30. 30.
    Juncker P, Hempel P (2017) Numerical study of the plasticity-induced stabilization effect on martensitic transformations in shape memory alloys. Shape Mem Superelasticity 3:422–430CrossRefGoogle Scholar
  31. 31.
    Bažant ZP, Jirásek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech 128:1119–1149CrossRefGoogle Scholar
  32. 32.
    Jirásek M, Rolshoven S (2003) Comparison of integral-type nonlocal plasticity models for strain softening materials. Int J Eng Sci 41:1553–1602CrossRefGoogle Scholar
  33. 33.
    Lorentz E, Andrieux S (2003) Analysis of non-local models through energetic formulations. Int J Solids Struct 40:2905–2936CrossRefGoogle Scholar
  34. 34.
    Peerlings RHJ, Geers MGD, De Borst R, Brekelmans WAM (2001) A critical comparison of nonlocal and gradient-enhanced softening continua. Int J Solids Struct 38:7723–7746CrossRefGoogle Scholar
  35. 35.
    Ball JM, Koumatos K, Seiner H (2011) Nucleation of austenite in mechanically stabilized martensite by localized heating. J Alloys Compd 577:S37–S42CrossRefGoogle Scholar
  36. 36.
    Frost M, Sedlák P, Šittner P (2017) Numerical study on localization of phase transformation in NiTi shape memory wires. Solid State Phenom 258:141–144CrossRefGoogle Scholar
  37. 37.
    Frost M, Sedlák P, Kadeřávek L, Heller L, Šittner P (2016) Modeling of mechanical response of NiTi shape memory alloy subjected to combined thermal and non-proportional mechanical loading: a case study on helical spring actuator. J Intell Mater Syst Struct 27:1927–1938CrossRefGoogle Scholar
  38. 38.
    Paranjape HM, Paul PP, Sharma H, Kenesei P, Park JS, Duerig TW, Brinson LC, Stebner AP (2017) Influences of granular constraints and surface effects on the heterogeneity of elastic, superelastic, and plastic responses of polycrystalline shape memory alloys. J Mech Phys Solids 102:46–66CrossRefGoogle Scholar
  39. 39.
    Churchill CB, Shaw JA, Iadicola MA (2009) Tips and tricks for characterizing shape memory alloy wire: part 3, localization and propagation phenomena. Exp Tech 33:70–78CrossRefGoogle Scholar
  40. 40.
    Xiao Y, Zeng P, Lei L (2016) Experimental investigation on the mechanical instability of superelastic NiTi shape memory alloy. Mater Res Express 25:3551–3557Google Scholar
  41. 41.
  42. 42.
    Frost M, Sedlák P, Kadeřávek L, Heller L, Šittner P (2018) Experimental and computational study on phase transformations in superelastic NiTi snake-like spring. Smart Mater Struct 27:095005CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • M. Frost
    • 1
    • 2
  • P. Sedlák
    • 1
    • 2
  • P. Sedmák
    • 3
    • 4
  • L. Heller
    • 1
    • 4
  • P. Šittner
    • 1
    • 4
  1. 1.Nuclear Physics Institute of the CASŘežCzechia
  2. 2.Institute of Thermomechanics of the CASPragueCzechia
  3. 3.European Synchrotron Radiation FacilityGrenobleFrance
  4. 4.Institute of Physics of the CASPragueCzechia

Personalised recommendations