Advertisement

Shape Memory and Superelasticity

, Volume 4, Issue 3, pp 360–368 | Cite as

Development of B2 Shape Memory Intermetallics Beyond NiAl, CoNiAl and CoNiGa

  • G. Gerstein
  • G. S. Firstov
  • T. A. Kosorukova
  • Yu. N. Koval
  • H. J. Maier
SPECIAL ISSUE: A TRIBUTE TO PROF. JAN VAN HUMBEECK – A LIFETIME of CONTRIBUTIONS to UNDERSTANDING MARTENSITE, INVITED PAPER
  • 136 Downloads

Abstract

The present study describes the development of shape memory alloys based on NiAl. Initially, this system was considered a promising but unsuccessful neighbour of NiTi. Later, however, shape memory alloys like CoNiAl or CoNiGa were developed that can be considered as NiAl derivatives and already demonstrated good mechanical properties. Yet, these alloys were still inferior to NiTi in most respects. Lately, using a multi-component approach, a CoNiCuAlGaIn high entropy intermetallic compound was developed from the NiAl prototype. This new alloy featured a B2 phase and a martensitic transformation along with a remarkable strength in the as-cast state. In the long-term, this new approach might led to a breakthrough for shape memory alloys in general.

Keywords

Martensitic transformation Crystal structure Intermetallics SMA Functional fatigue High entropy alloys 

Notes

Acknowledgements

G.S. Firstov acknowledges support by the DAAD scholarship (91657703) in the frame of the scholarship program “Research Stays for University Academics and Scientists, 2017”. G. Gerstein and H.J. Maier acknowledge financial support by the German Research Foundation (Grant No. MA1175/79-1).

References

  1. 1.
    Buehler WJ, Gilfrich JW, Wiley RC (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34:1475–1477CrossRefGoogle Scholar
  2. 2.
    Cuthill JR, McAlister AJ, Williams ML (1968) Soft X-Ray Spectroscopy of Alloys: TiNi and the Ni–Al System. J Appl Phys 39:2204–2208CrossRefGoogle Scholar
  3. 3.
    Otsuka K, Ren X (1999) Martensitic transformations in nonferrous shape memory alloys. Mater Sci Eng A273–275:89–105CrossRefGoogle Scholar
  4. 4.
    Sluiter M, Turchi PEA, Pinski FJ, Stocks GM (1992) Theoretical studies of phase stability in Ni-Al and NiTi alloys. J Phase Equilib 13:605–611CrossRefGoogle Scholar
  5. 5.
    Luy Jianmin, Qingmiao Hu, Yang Rui (2009) A comparative study of elastic constants of NiTi and NiAl alloys from first-principle calculations. J Mater Sci Technol 25:215–217Google Scholar
  6. 6.
    Otsuka K, Wayman CM (1998) Shape memory materials. University Press, CambridgeGoogle Scholar
  7. 7.
    Enami K, Nenno S (1971) Memory effect in Ni-36.8 At. Pct. Al martensite. Metall Transactions 2:1487–1490Google Scholar
  8. 8.
    Au YK, Wayman CM (1972) Thermoelastic behavior of the martensitic transformation in β` NiAl alloys. Scripta Metall 6:1209–1214CrossRefGoogle Scholar
  9. 9.
    Kainuma R, Ishida K, Nishizawa T (1992) Thermoelastic martensite and shape memory effect in B2 base Ni–Al–Fe alloy with enhanced ductility. Metall Trans A 23A:1147–1153CrossRefGoogle Scholar
  10. 10.
    Enami K, Nenno S (1978) A new ordered phase in tempered 63.8 Ni–1Co–Al martensite. Trans JIM 19:571–580CrossRefGoogle Scholar
  11. 11.
    Kim HY, Miyazaki S (2004) Martensitic transformation behavior in Ni–Al and Ni–Al–Re melt-spun ribbons. Scripta Mater 50:237–241CrossRefGoogle Scholar
  12. 12.
    Firstov GS, Kosorukova TA, Koval YuN, Odnosum VV (2015) High entropy shape memory alloys. Mater Today 2S:S499–S504CrossRefGoogle Scholar
  13. 13.
    Firstov GS, Kosorukova TA, Koval YuN, Verhovlyuk PA (2015) Directions for High-Temperature Shape Memory Alloys’ Improvement: Straight Way to High-Entropy Materials? Shape Mem Superelast 1:400–407CrossRefGoogle Scholar
  14. 14.
    Lutterotti L (2015) MAUD: Materials Analysis Using Diffraction. A Rietveld extended program to perform the combined analysis. University of Trento, ItalyGoogle Scholar
  15. 15.
    Chumlyakov YuI, Panchenko EYu, Ovsyannikov AV, Chusov SA, Kirillov VA, Karaman I, Maier HJ (2009) High-Temperature Superelasticity and the Shape-Memory Effect in [001] Co–Ni–Al Single Crystals. Phys Met Metall 107:194–205CrossRefGoogle Scholar
  16. 16.
    Oikawa K, Wulff L, Iijima T, Gejima F, Ohmori T, Fujita A, Fukamichi K, Kainuma R, Ishida K (2001) Promising ferromagnetic Ni–Co–Al shape memory alloy system. Appl Phys Lett 79:3290–3292CrossRefGoogle Scholar
  17. 17.
    Tanaka Y, Oikawa K, Sutou Y, Omori T, Kainuma R, Ishida K (2006) Martensitic transition and superelasticity of Co–Ni–Al ferromagnetic shape memory alloys with β + γ two-phase structure. Mater Sci Eng A 438–440:1054–1060CrossRefGoogle Scholar
  18. 18.
    Dogan E, Karaman I, Chumlyakov YI, Luo ZP (2011) Microstructure and martensitic transformation characteristics of CoNiGa high temperature shape memory alloys. Acta Mater 59:1168–1183CrossRefGoogle Scholar
  19. 19.
    Liu J, Xia M, Huang Y, Zheng H, Li J (2006) Effect of annealing on the microstructure and martensitic transformation of magnetic shape memory alloys CoNiGa. J Alloy Compd 417:96–99CrossRefGoogle Scholar
  20. 20.
    Liu J, Zheng HX, Xia MX, Huang YL, Li JG (2005) Martensitic transformation and magnetic properties in Heusler CoNiGa magnetic shape memory alloys 52:935–938Google Scholar
  21. 21.
    Oikawa K, Ota T, Gejima F, Ohmori T, Kainuma R, Ishida K (2001) Phase equilibria and phase transformations in new B2-type ferromagnetic shape memory alloys of Co–Ni–Ga and Co–Ni–Al systems. Mater Trans 42:2472–2475CrossRefGoogle Scholar
  22. 22.
    Oikawa K, Ota T, Imano Y, Omori T, Kainuma R, Ishida K (2006) Phase equilibria and phase transformation of Co–Ni–Ga ferromagnetic shape memory alloy system. J Phase Equil Diffus 27:75–82CrossRefGoogle Scholar
  23. 23.
    Dogan E, Karaman I, Singh N, Chivukula A, Thawabi HS, Arroyave R (2012) The effect of electronic and magnetic valences on the martensitic transformation of CoNiGa shape memory alloys. Acta Mater 60:3545–3558CrossRefGoogle Scholar
  24. 24.
    Hamilton RF, Sehitoglu H, Efstathiou C, Maier HJ, Chumlyakov Y, Zhang XY (2005) Transformation of Co–Ni–Al single crystals in tension. Scripta Mater 53:131–136CrossRefGoogle Scholar
  25. 25.
    Krooß P, Niendorf T, Kadletz PM, Somsen C, Gutmann MJ, Chumlyakov YI, Schmahl WW, Eggeler G, Maier HJ (2015) Functional fatigue and tension-compression asymmetry in [001]-oriented Co49Ni21Ga30 high-temperature shape memory alloy single crystals. Shape Mem Superelast 1:6–17CrossRefGoogle Scholar
  26. 26.
    Firstov GS, Van Humbeeck J, Koval YuN (2006) High Temperature Shape Memory Alloys Problems and Prospects. J Intel Mater Syst Struct 17:1041–1047CrossRefGoogle Scholar
  27. 27.
    Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55:257–315CrossRefGoogle Scholar
  28. 28.
    Firstov G, Koval Yu, Van Humbeeck J, Timoshevskii A, Kosorukova T, Verhovlyuk P (2015) Some physical principles of high temperature shape memory alloys design. In: Resnina N, Rubanik V (eds) Shape Memory Alloys: Properties, Technologies, Opportunities. Trans Tech Publications Inc., Zurich, pp 207–232Google Scholar
  29. 29.
    Firstov G, Timoshevskii A, Kosorukova T, Koval Yu, Matviychuk Yu, Verhovlyuk P (2015) Electronic and crystal structure of the high entropy TiZrHfCoNiCu intermetallics undergoing martensitic transformation. MATEC Web Conf 33:06006CrossRefGoogle Scholar
  30. 30.
    Takeuchi A, Inoue A (2005) Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans 46:2817–2829CrossRefGoogle Scholar
  31. 31.
    Murty BS, Yeh JW, Ranganathan S (2014) High entropy alloys. Elsevier, OxfordCrossRefGoogle Scholar
  32. 32.
    Zhang Y, Zuo TT, Nang Z, Cao MC, Dahmen KA, Liaw PK, Lu ZP (2014) Microstructures and properties of high entropy alloys. Prog Mater Sci 61:1–93CrossRefGoogle Scholar
  33. 33.
    Firstov SA (2014) Rogul’ TG, Krapivka NA, Ponomarev SS, Tkach VN, Kovylyaev VV, Gorban’ VF, Karpets MV (2014) Solid-solution hardening of a high-entropy AlTiVCrNbMo Alloy. Russ Metall 4:285–292CrossRefGoogle Scholar
  34. 34.
    Zhang P, Li SX, Zhang ZF (2011) General relationship between strength and hardness. Mater Sci Eng A 529:62–73CrossRefGoogle Scholar
  35. 35.
    Noebe RD, Cullers CL, Bowman RR (1992) The effect of strain rate and temperature on tensile properties of NiAl. J Mater Res 7:605–612CrossRefGoogle Scholar
  36. 36.
    Bowman RR, Noebe RD (1992) Development of NiAl and NiAl-based composites for structural applications: a status report. In: Antolovich SD, Stusrud RW, MacKay RA, Anton DL, Khan T, Kissinger RD, Klarstrom DL (eds) Superalloys. The Minerals, Metals & Materials Society, Pittsburgh, pp 341–350Google Scholar
  37. 37.
    Noebe RD, Bowman RR, Nathal MV (1993) Physical and mechanical properties of the B2 compound NiAl. Int Mater Rev 38:193–232CrossRefGoogle Scholar
  38. 38.
    Kimura Y, Miura S, Suzuki T, Mishima Y (1994) Microstructrure and mechanical properties of two phase alloys based on the B2-type intermetallic compound CoAl in the Co-Ni-Al system. Mater Trans, JIM 35:800–807CrossRefGoogle Scholar
  39. 39.
    Wang L, Shen J, Zhang Y, Xu H, Fu H (2016) Microstructure and mechanical properties of NiAl-based hypereutectic alloy obtained by liquid metal cooling and zone melted liquid metal cooling directional solidification techniques. J Mater Res 31:646–654CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • G. Gerstein
    • 1
  • G. S. Firstov
    • 2
  • T. A. Kosorukova
    • 2
  • Yu. N. Koval
    • 2
  • H. J. Maier
    • 1
  1. 1.Institut für Werkstoffkunde (Materials Science) Leibniz Universität HannoverGarbsenGermany
  2. 2.G.V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of UkraineKievUkraine

Personalised recommendations