Advertisement

Shape Memory and Superelasticity

, Volume 4, Issue 2, pp 272–284 | Cite as

Remarks on the Particular Behavior in Martensitic Phase Transition in Cu-Based and Ni–Ti Shape Memory Alloys

  • Vicenç Torra
  • Ferran Martorell
  • Francisco C. Lovey
  • Marcos Sade
SPECIAL ISSUE: A TRIBUTE TO PROF. JAN VAN HUMBEECK – A LIFETIME of CONTRIBUTIONS to UNDERSTANDING MARTENSITE, INVITED PAPER
  • 76 Downloads

Abstract

Many macroscopic behaviors of the martensitic transformations are difficult to explain in the frame of the classical first-order phase transformations, without including the role of point and crystallographic defects (dislocations, stacking faults, interfaces, precipitates). A few major examples are outlined in the present study. First, the elementary reason for thermoelasticity and pseudoelasticity in single crystals of Cu–Zn–Al (β-18R transformation) arises from the interaction of a growing martensite plate with the existing dislocations in the material. Secondly, in Cu–Al–Ni, the twinned hexagonal (γ′) martensite produces dislocations inhibiting this transformation and favoring the appearance of 18R in subsequent transformation cycles. Thirdly, single crystals of Cu–Al–Be visualize, via enhanced stress, a transformation primarily to 18R, a structural distortion of the 18R structure, and an additional transformation to another martensitic phase (i.e., 6R) with an increased strain. A dynamic behavior in Ni–Ti is also analyzed, where defects alter the pseudoelastic behavior after cycling.

Keywords

Shape memory Martensitic transformation NiTi CuAlBe CuZnAl CuAlNi Mechanical behavior 

Notes

Acknowledgements

Technical supports from the Materials Laboratory of the Atomic Center of Bariloche, 8400 Argentina, and in Department of Structural Mechanics in Pavia University (Italy), the facilities in stayed cables of ELSA, Ispra, Italy, and the cable studies of IFSTTAR, Bouguenais, France, are gratefully acknowledged. Prof. Jan Van Humbeeck, we have a great pleasure contributing with this paper in occasion of your retirement. We thank you very much for your wide and fruitful contributions on many fields of metallurgy and particularly on martensitic transformations. We shall keep great remembers of our joint research, discussions, and collaborations over more than 30 years of exciting research activities. Your laboratory at the KUL was a pleasant place where we found your kind friendship and your knowledge to enrich our research. You have also traveled across the world visiting many countries. We remember your stay at the UIB (Balearic Islands) and the CAB (Bariloche, Argentina) where we accomplished interesting joint work on Shape Memory Alloys, particularly in Copper-based and Ni–Ti alloys. Many conferences like ESOMAT and ICOMAT gave us the opportunity to attend your lectures and to have interesting discussions enlightening our ideas. Dear colleague, we wish you a happy retirement and full and long life accompanied with relatives and friends.

References

  1. 1.
    Ehrenfest P (1933) Phase changes in the ordinary and extended sense classified according to the corresponding singularities of the thermodynamic potential (Verhandelingen der Koninklijke Akademie van Wetenschappen. Amsterdam). Proc Acad Sci Amsterdam 36:153–157Google Scholar
  2. 2.
    Landau LD (1937) Zur Theorie der phasenumwandlungen II. Phys Z Sowjetunion 11:26–35Google Scholar
  3. 3.
    Lovey FC (1982) Relationship between surface martensite, thin foil and bulk martensite. Journal de Physique, Colloque 4 43:C4-585–C4-590Google Scholar
  4. 4.
    Otsuka K, Wayman CM (1998) Introduction in shape memory materials, 1st edn. Cambridge University Press, Cambridge, pp 1–26Google Scholar
  5. 5.
    Lovey FC, Amengual A, Torra V, Ahlers M (1990) On the origin of the intrinsic thermoelasticity associated with a single-interface transformation in Cu–Zn–Al shape memory alloys. Philos Mag A 61:159–165CrossRefGoogle Scholar
  6. 6.
    Lovey FC, Torra V (1999) Shape memory in Cu-based alloys: phenomenological behavior at the mesoscale level and interaction of martensitic transformation with structural defects in Cu–Zn–Al. Prog Mater Sci 44:189–289CrossRefGoogle Scholar
  7. 7.
    Torra V, Auguet C, Isalgue A, Carreras G, Lovey FC (2013) Metastable effects on martensitic transformation in SMA. Part IX. Static aging for morphing by temperature and stress. J Therm Anal Cal 112:777–780CrossRefGoogle Scholar
  8. 8.
    Torra V, Isalgue A, Sade M, Lovey FC (2015) Shape memory alloys as an effective tool to damp oscillations: study of the fundamental parameters required to guarantee technological applications. J Therm Anal Cal 119(3):1475–1533CrossRefGoogle Scholar
  9. 9.
    Ahlers M (1986) Martensite and equilibrium phases in Cu–Zn and Cu–Zn–Al alloys. Prog Mater Sci 30(3):135–186CrossRefGoogle Scholar
  10. 10.
    Wollants P, Roos JR, Delaey L (1993) Thermally- and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics. Prog Mater Sci 37(3):227–288CrossRefGoogle Scholar
  11. 11.
    Otsuka K, Ren X (1999) Martensitic transformations in nonferrous shape memory alloys. Mater Sci Eng A 273–275:89–105CrossRefGoogle Scholar
  12. 12.
    La Roca PM, Isola LM, Sobrero CE, Vermaut P, Malarría J (2015) Grain size effect on the thermal-induced martensitic transformation in polycrystalline Cu-based shape memory alloys. Mater Today 2:S743–S746CrossRefGoogle Scholar
  13. 13.
    Tuncer N, Qiao L, Radovitzky R, Schuh CA (2015) Thermally induced martensitic transformations in Cu-based shape memory alloy microwires. J Mater Sci 50:7473–7487CrossRefGoogle Scholar
  14. 14.
    Shrestha KC, Araki Y,Kusama T, Omori T, Kainuma R (2016) Functional fatigue of polycrystalline Cu–Al–Mn superelastic alloy bars under cyclic tension. J Mater Civ Eng 28. Article number 04015194Google Scholar
  15. 15.
    Yan H, Marcoux Y, Chen Y (2017) Cyclic mechanical properties of copper-based shape memory alloys: the effect of strain accommodation at grain boundaries. Int J Fatigue 105:1–6CrossRefGoogle Scholar
  16. 16.
    Li DY, Zhang SL, Liao WB, Geng GH, Zhang Y (2016) Superelasticity of Cu–Ni–Al shape-memory fibers prepared by melt extraction technique. Int J Miner Metall Mater 23:928–933CrossRefGoogle Scholar
  17. 17.
    Donoso GR, Walczak M, Moore ER, Ramos-Grez JA (2017) Towards direct metal laser fabrication of Cu-based shape memory alloys. Rapid Prototyp J 23:329–336CrossRefGoogle Scholar
  18. 18.
    La Roca P, Isola L, Vermaut Ph, Malarría J (2017) Relationship between grain size and thermal hysteresis of martensitic transformations in Cu-based shape memory alloys. Scr Mater 135:5–9CrossRefGoogle Scholar
  19. 19.
    Lima EPR, De Lima PC, Nava M (2016) Determination of recrystallization kinetics and activation energy of grain growth process of Cu–14Al–4Ni shape memory alloy. Mater Res Soc Symp Proc 1765:127–132CrossRefGoogle Scholar
  20. 20.
    Saposhnikov Golyandin, Kustov S, Cesari E (2008) Defect-assisted diffusion and kinetic stabilization in Cu–Al–Be β1′ martensite. Mater Sci Eng A 481–482:532–537CrossRefGoogle Scholar
  21. 21.
    Sade M, Pelegrina JL, Yawny A, Lovey FC (2015) Diffusive phenomena and pseudoelasticity in Cu–Al–Be single crystals. J Alloy Compd 622:309–317CrossRefGoogle Scholar
  22. 22.
    Figueroa CG, García-Castillo FN, Jacobo VH, Cortés-Pérez J, Schouwenaars R (2017) Microstructural and superficial modification in a Cu–Al–Be shape memory alloy due to superficial severe plastic deformation under sliding wear conditions. In: IOP Conference Series: Materials Science and Engineering, 194. Article Number 012011Google Scholar
  23. 23.
    Zárubová N, Gemperle A, Novák V (1997) Initial stages of γ2 precipitation in an aged Cu–Al–Ni shape memory alloy. Mater Sci Eng 222:166–174CrossRefGoogle Scholar
  24. 24.
    Araujo VEA, Gastien R, Zelaya E, Beiroa JI, Corro I, Sade M, Lovey FC (2015) Effects on the martensitic transformations and the microstructure of CuAlNi single crystals after ageing at 473 K. J Alloys Compd 41:155–161CrossRefGoogle Scholar
  25. 25.
    Cuniberti A, Montecinos S, Lovey FC (2009) Effect of γ2-phase precipitates on the martensitic transformation of a β-CuAlBe shape memory alloy. Intermetallics 17:435–440CrossRefGoogle Scholar
  26. 26.
    Bubani FDC, Lovey FC, Sade M (2017) A short review on the interaction of precipitates and martensitic transitions in CuZnAl shape memory alloys. Funct Mater Lett 10(1):1740006-1–1740006-8CrossRefGoogle Scholar
  27. 27.
    Huang H, Wang W, Liu J, Xie J (2016) Progress on the applications of Cu-based shape memory alloys. Mater China 35:919–926Google Scholar
  28. 28.
    Tachoire H, Macqueron JL, Torra V (1986) Signal treatments in microcalorimetry-applications in kinetics and Thermodynamics. Thermochim Acta 105:333–367CrossRefGoogle Scholar
  29. 29.
    Torra V, Tachoire H (1998) Conduction calorimeters- heat transmission systems with uncertainties. J Thermal Anal Cal 52(3):663–681CrossRefGoogle Scholar
  30. 30.
    Isalgue A, Torra V (1993) High-resolution equipment for martensitic transformation in shape memory alloys: local studies in stress-strain-temperature. Meas Sci Technol 4:456–461CrossRefGoogle Scholar
  31. 31.
    Amengual A, Torra V (1989) An experimental set-up for thermal analysis and DSC—its application to the hysteresis cycles in shape memory alloys. J Phys E 22(7):433–437CrossRefGoogle Scholar
  32. 32.
    Lovey FC, Isalgue A, Torra V (1992) Hysteresis loops in stress-induced β-18R martensite transformation in Cu–Zn–Al. Acta Metall Mater 40(12):3389–3394CrossRefGoogle Scholar
  33. 33.
    Amengual A, Lovey FC, Torra V (1990) The hysteretic behavior of a single interface martensitic-transformation in Cu–Zn–Al shape memory alloys. Scr Metall Mater 24(12):2241–2246CrossRefGoogle Scholar
  34. 34.
    Lovey FC, Amengual A, Torra V (1991) Experimental and crystallographic evidence for the growth of two equivalents ß-variants from one single martensite plate in a Cu–Zn–Al single crystal. Philos Mag A 64(4):787–796CrossRefGoogle Scholar
  35. 35.
    Van Humbeeck J, Van Hulle D, Delaey L, Ortin J, Segui C, Torra V (1987) A two-stage martensite transformation in a Cu-13.99 mass% Al-3.5 mass% Ni alloy. Trans JIM 28(5):382–391CrossRefGoogle Scholar
  36. 36.
    Gastien R, Corbellani CE, Sade M, Lovey F (2004) Thermodynamical aspects of martensitic transformations in CuAlNi single crystals. Scr Mater 50(8):1103–1107CrossRefGoogle Scholar
  37. 37.
    Gastien R, Sade M, Lovey FC (2008) Interaction between martensitic structure and defects in β − β′ + γ′ cycling in CuAlNi single crystal. Model for the inhibition of γ′ martensite. Acta Mater 56:1570–1576CrossRefGoogle Scholar
  38. 38.
    Montecinos S, Cuniberti A (2008) Thermomechanical behavior of a CuAlBe shape memory alloy. J Alloys Compd 457(1–2):332–336CrossRefGoogle Scholar
  39. 39.
    Sade M, de Castro Bubani F, Lovey F, Torra V (2014) Effect of grain size on stress induced martensitic transformations in a Cu–Al–Be polycrystalline shape-memory alloy: pseudoelastic cycling effects and microstructural modifications. Mater Sci Eng A 609:300–309CrossRefGoogle Scholar
  40. 40.
    Barceló G, Ahlers M, Rapacioli R (1979) Stress induced phase transformation in martensitic single crystal of CuZnAl alloys. Mater Res Adv Tech 70(11):732–738Google Scholar
  41. 41.
    Otsuka K, Wayman CM (1998) Mechanism of shape memory effect and superelasticity. In: Otsuka K, Wayman CM (eds) Shape-memory materials. Cambridge University Press, Cambridge, pp 27–48Google Scholar
  42. 42.
    Hamilton RF, Sehitoglu H, Efstathiou C, Maier HJ (2007) Inter-martensitic transitions in Ni–Fe–Ga single crystals. Acta Mater 55:4867–4876CrossRefGoogle Scholar
  43. 43.
    Hamilton RF, Sehitoglu H, Aslantas K, Efstathiou C, Maier HJ (2008) Inter-martensite strain evolution in NiMnGa single crystals. Acta Mater 56(10):2231–2236CrossRefGoogle Scholar
  44. 44.
    Sade M, Yawny A, Lovey FC, Torra V (2011) Pseudoelasticity of Cu–Al–Be single crystals: unexpected mechanical behavior. Mat Sci Eng A 528:7871–7877CrossRefGoogle Scholar
  45. 45.
    González CH, De Araújo CJ, Quadros NF, Guénin G, Morin M (2004) Study of martensitic stabilisation under stress in Cu–Al–Be shape memory alloy single crystal. Mater Sci Eng A 378:253–256CrossRefGoogle Scholar
  46. 46.
    Bubani FDC, Sade M, Torra V, Lovey FC, Yawny A (2013) Stress induced martensitic transformations and phases stability in Cu–Al–Be shape-memory single crystals. Mat Sci Eng A583:129–139CrossRefGoogle Scholar
  47. 47.
    Arneodo Larochette P, Condó AM, Ahlers M (2005) Stability and stabilization of 2H martensite in Cu–Zn–Al single crystals. Philos Mag 85:2491–2525CrossRefGoogle Scholar
  48. 48.
    Miyazaki S (1998) Medical and dental applications of shape memory alloys. In: Otsuka K, Wayman C (eds) Shape memory materials. Cambridge University Press, Cambridge, pp 267–281Google Scholar
  49. 49.
    Duerig T, Pelton A, Stockel D (1999) An overview of nitinol medical applications. Mater Sci Eng A 273–275:149–160CrossRefGoogle Scholar
  50. 50.
    Song C, Frank TG, Cuschieri A (2003) Application of high-pushing-force NiTi for minimal access surgery. J Phys IV 112:1133–1136Google Scholar
  51. 51.
    Van Humbeeck J (1999) Non-medical applications of shape memory alloys. Mater Sci Eng A 273–275:134–148CrossRefGoogle Scholar
  52. 52.
    Dolce M, Cardone D (2006) Theoretical and experimental studies for the application of shape memory alloys in civil engineering. J Eng Mater Technol Trans ASME 128:302–311CrossRefGoogle Scholar
  53. 53.
    Song G, Ma N, Li HN (2006) Applications of shape memory alloys in civil structures. Eng Struct 28:1266–1274CrossRefGoogle Scholar
  54. 54.
    Cardone D, Dolce M (2009) SMA-based tension control block for metallic tendons. Int J Mech Sci 51:159–165CrossRefGoogle Scholar
  55. 55.
    Saburi T (1998) Ti–Ni shape memory alloys. In: Otsuka K, Wayman CM (eds) Shape memory materials. Cambridge University Press, Cambridge, pp 49–96Google Scholar
  56. 56.
    Saburi T, Tatsumi T, Nenno S (1982) Effects of heat treatment on mechanical behavior of Ti–Ni alloys. J Phys 43:C4-261–C4-266Google Scholar
  57. 57.
    Miyazaki S, Ohmi Y, OtsukaK Suzuki Y (1982) Characteristics of deformation and transformation pseudoelasticity in Ti–Ni alloys. J Phys 43:C4-255–C4-260Google Scholar
  58. 58.
    Puertas GM (2006) Caracterización de materiales con memoria de forma base NiTi para diseño de acoples/Characterization of Ni-Ti Materials with shape memory for desing of coupling devices. Proyecto Integrador Ingeniería Mecánica, Universidad Nacional de Cuyo, Instituto BalseiroGoogle Scholar
  59. 59.
    Zhou N, Shen C, Wagner MF, Eggeler G, Mills MJ, Wang Y (2010) Effect of Ni4Ti3 precipitation on martensitic transformation in Ti–Ni. Acta Mater 58:6685–6694CrossRefGoogle Scholar
  60. 60.
    Wang X, Kustov S, Li K, Schryvers D, Verlinden B, Van Humbeeck J (2015) Effect of nanoprecipitates on the transformation behavior and functional properties of a Ti-50.8 at.% Ni alloy with micron-sized grains. Acta Mater 82:224–233CrossRefGoogle Scholar
  61. 61.
    Yawny A, Sade M, Eggeler G (2005) Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires. Int J Mater Res (Zeitschrift für Metallkunde) 96:608–618Google Scholar
  62. 62.
    Vojtěch D, Voděrová M, Kubásek J, Novák P, Šedá P, Michalcová A, Fojt J, Hanuš J, Mestek O (2011) Effects of short-time heat treatment and subsequent chemical surface treatment on the mechanical properties, low-cycle fatigue behavior and corrosion resistance of a Ni-Ti (50.9 at.% Ni) biomedical alloy wire used for the manufacture of stents. Mater Sci Eng A 528:1864–1876CrossRefGoogle Scholar
  63. 63.
    Tadaki T (1998) Cu-based shape memory alloys. In: Otsuka K, Wayman CM (eds) Shape memory materials. Cambridge University Press, Cambridge, pp 97–116Google Scholar
  64. 64.
    Frenzel J, Wieczorek A, Opahle I, Maaβ B, Drautz R, Eggeler G (2015) On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys. Acta Mater 90:213–231CrossRefGoogle Scholar
  65. 65.
    Nam TH, Saburi T, Shimizu K (1990) Cu-content dependence of shape memory characteristics in Ti–Ni–Cu alloys. Mater Trans JIM 31(11):959–967CrossRefGoogle Scholar
  66. 66.
    Grossmann C, Frenzel J, Sampath V, Eggeler G (2009) Elementary transformation and deformation processes and the cyclic stability of NiTi and NiTiCu shape memory spring actuators. Metall Mater Trans A 40:2530–2544CrossRefGoogle Scholar
  67. 67.
    Condó AM, Lovey FC, Olbricht J, Somsen Ch, Yawny A (2008) Microstructural aspects related to pseudoelastic cycling in ultra fine grained Ni–Ti. Mater Sci Eng A 481–482:138–141CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Vicenç Torra
    • 1
    • 2
  • Ferran Martorell
    • 2
  • Francisco C. Lovey
    • 3
  • Marcos Sade
    • 3
  1. 1.Department of Applied PhysicsPolytechnical University of CataloniaBarcelonaSpain
  2. 2.Private Research GroupBarcelonaSpain
  3. 3.Department of Materials Science, Centro Atomico de BarilocheInstituto Balseiro and CONICETSan Carlos de BarilocheArgentina

Personalised recommendations