Advertisement

Shape Memory and Superelasticity

, Volume 4, Issue 1, pp 242–255 | Cite as

Coupled Simulation of Thermomagnetic Energy Generation Based on NiMnGa Heusler Alloy Films

  • Manfred Kohl
  • Marcel Gueltig
  • Frank Wendler
SPECIAL ISSUE: ICFSMA 2016, INVITED PAPER

Abstract

This paper presents a simulation model for the coupled dynamic properties of thermomagnetic generators based on magnetic shape memory alloy (MSMA) films. MSMA thermomagnetic generators exploit the large abrupt temperature-induced change of magnetization at the first- or second-order magnetic transition as well as the short heat transfer times due to the large surface-to-volume ratio of films. These properties allow for resonant self-actuation of freely movable MSMA cantilever devices showing thermomagnetic duty cycles in the order of 10 ms duration, which matches with the period of oscillatory motion. We present a numerical analysis of the energy conversion processes to understand the effect of design parameters on efficiency and power output. A lumped element model is chosen to describe the time dependence of MSMA cantilever deflection and of temperature profiles as well as the magnitude and phase dependency of magnetization change. The simulation model quantitatively describes experimentally observed oscillatory motion and resulting power output in the order of 100 mW cm−3. Furthermore, it predicts a power output of 490 mW cm−3 for advanced film materials with temperature-dependent change of magnetization ∆M/∆T of 4 A m2 (kg K)−1, which challenges state-of-the-art thermoelectric devices.

Keywords

Coupled finite element simulation Lumped element modelling Magnetic shape memory films Energy harvesting 

Notes

Acknowledgements

We gratefully acknowledge the support of S. Rastjoo in analysing and presenting the data. This work is funded by the German Science Foundation (DFG).

References

  1. 1.
    Vullers RJM, van Schaijk R, Visser HJ, Penders J, Van Hoof C (2010) Energy harvesting for autonomous wireless sensor networks. IEEE Solid-State Circuits Mag 2:29CrossRefGoogle Scholar
  2. 2.
    Matiko JW, Grabham NJ, Beeby SP, Tudor MJ (2014) Review of the application of energy harvesting in buildings. Measurement Science Technology 25:022001CrossRefGoogle Scholar
  3. 3.
    Vining CB (2009) An inconvenient truth about thermoelectrics. Nat Mater 8:83CrossRefGoogle Scholar
  4. 4.
    Bierschenk JL (2009) Optimized thermoelectrics for energy harvesting applications. In: Priya S, Inman DJ (eds) Energy harvesting technologies. Springer, BostonGoogle Scholar
  5. 5.
    Srivastava V, Song Y, Bhatti K, James RD (2011) The direct conversion of heat to electricity using multiferroic alloys. Adv Energy Mater 1:97CrossRefGoogle Scholar
  6. 6.
    Gueltig M, Ossmer H, Ohtsuka M, Miki H, Tsuchiya K, Takagi T, Kohl M (2014) High frequency thermal energy harvesting using magnetic shape memory films. Adv Energy Mater 4:1400751CrossRefGoogle Scholar
  7. 7.
    Gueltig M, Wendler F, Ossmer H, Ohtsuka M, Miki H, Takagi T, Kohl M (2017) High-performance thermomagnetic generators based on Heusler Alloy films. Adv Energy Mater 7:1601879CrossRefGoogle Scholar
  8. 8.
    Ullakko K, Huang JK, Kantner C (1966) Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl Phys Lett 1996:69Google Scholar
  9. 9.
    Chernenko VA, Ohtsuka M, Kohl M, Khovailo VV, Takagi T (2005) Transformation behavior of Ni–Mn–Ga thin films. Smart Mater Struct 14:S245CrossRefGoogle Scholar
  10. 10.
    Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A (2005) Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat Mater 4:450CrossRefGoogle Scholar
  11. 11.
    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Fujita A, Kanomata T, Ishida K (2006) Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439:957CrossRefGoogle Scholar
  12. 12.
    Piersol AG (2009) Concepts in vibration data analysis. In: Piersol A, Paez T (eds) Harris shock and vibration handbook. NewYork, McGraw Hill ProfessionalGoogle Scholar
  13. 13.
    Bulgrin KE, Ju YS, Carman GP, Lavine AS (2009) A coupled thermal and mechanical model of a thermal energy harvesting device. Proc ASME.  https://doi.org/10.1115/imece2009-13040 Google Scholar
  14. 14.
    Lee K-L, Seelecke S (2005) A model for ferromagnetic shape memory thin film actuators. Proc SPIE Smart Struct Mater 5757:302–313Google Scholar
  15. 15.
    Post A, Knight C, Kisi E (2013) Thermomagnetic energy harvesting with first order phase change materials. J Appl Phys 114:033915CrossRefGoogle Scholar
  16. 16.
    Engel A, Friedrichs R (2002) On the electromagnetic force on a polarizable body. Am J Phys 70:428CrossRefGoogle Scholar
  17. 17.
    O’Handley RC (1999) Modern magnetic materials: principles and applications. Wiley-Interscience, New YorkGoogle Scholar
  18. 18.
    Camacho JM, Sosa V (2013) Alternative method to calculate the magnetic field of permanent magnets with azimuthal symmetry. Revista Mexicana de Fisica E 59:8Google Scholar
  19. 19.
    Pohlhausen E (1921) Der Wärmeaustausch zwischen festen Körpern und Flüssigkeiten mit kleiner Reibung und kleiner Wärmeleitung. J Appl Math Mech 1:115Google Scholar
  20. 20.
    Beiss P (2003) Non ferrous materials. In: Beiss P, Ruthardt R, Warlimont H (eds) Powder metallurgy data. Springer, BerlinCrossRefGoogle Scholar
  21. 21.
    Tickle R, James RD (1999) Magnetic and magneto-mechanical properties of Ni2MnGa. J Magn Magn Mater 195:625CrossRefGoogle Scholar
  22. 22.
    Martienssen W, Warlimont H (2005) springer handbook of condensed matter and materials data. Springer, BerlinCrossRefGoogle Scholar
  23. 23.
    Gere JM, Timoshenko SP (1997) Mechanics of materials. PWS, BostonGoogle Scholar
  24. 24.
    Young HD, Sears FW (1992) University physics. Addison-Wesley Longman, ReadingGoogle Scholar
  25. 25.
    Soderberg O, Aaltio I, Ge Y, Heczko O, Hannula S-P (2008) Ni–Mn–Ga multifunctional compounds. Mater Sci Eng A 481:80CrossRefGoogle Scholar
  26. 26.
    Hsu CJ, Sandoval SM, Wetzlar KP, Carman GP (2011) Thermomagnetic conversion efficiencies for ferromagnetic materials. J Appl Phys 110:123923CrossRefGoogle Scholar
  27. 27.
    Chen CC, Chung TK, Cheng CC, Tseng CY (2014) SPIE Smart Structures and Material + Nondestructive Evaluation and Health Monitoring. p. 9057Google Scholar
  28. 28.
    Ujihara M, Carman GP, Lee DG (2007) Thermal energy harvesting device using ferromagnetic materials. Appl Phys Lett 91:093508CrossRefGoogle Scholar
  29. 29.
    Joshi KB, Priya S (2013) Multi-physics model of a thermo-magnetic energy harvester. Smart Mater Struct 22:055005CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Department of Materials Sciences and EngineeringFriedrich-Alexander University Erlangen-NürnbergFürthGermany

Personalised recommendations