Shape Memory and Superelasticity

, Volume 4, Issue 1, pp 224–231 | Cite as

Laser Shock Wave-Assisted Patterning on NiTi Shape Memory Alloy Surfaces

  • Saidjafarzoda Ilhom
  • Dovletgeldi Seyitliyev
  • Khomidkohodza Kholikov
  • Zachary Thomas
  • Ali O. Er
  • Peizhen Li
  • Haluk E. Karaca
  • Omer San


Shape memory alloys (SMAs) are a unique class of smart materials and they were employed in various applications in engineering, biomedical, and aerospace technologies. Here, we report an advanced, efficient, and low-cost direct imprinting method with low environmental impact to create thermally controllable surface patterns. Patterned microindents were generated on Ni50Ti50 (at. %) SMAs using an Nd:YAG laser with 1064 nm wavelength at 10 Hz. Laser pulses at selected fluences were focused on the NiTi surface and generated pressure pulses of up to a few GPa. Optical microscope images showed that surface patterns with tailorable sizes can be obtained. The depth of the patterns increases with laser power and irradiation time. Upon heating, the depth profile of SMA surfaces changed where the maximum depth recovery ratio of 30% was observed. Recovery ratio decreased and stabilized when the number of pulses and thus the well depth were further increased. A numerical simulation of pressure evolution in shape memory alloys showed a good agreement with the experimental results. The stress wave closely followed the rise time of the laser pulse to its peak value and initial decay. Rapid attenuation and dispersion of the stress wave were found in our simulation.


Martensite NiTi shape memory alloys Mechanical behavior Shape/depth recovery Indentation by laser shock wave Stress-induced martensitic phase transformation 


  1. 1.
    Sugioka K, Cheng Y (2014) Ultrafast lasers-reliable tools for advanced materials processing. Light Sci Appl 3:e149-12CrossRefGoogle Scholar
  2. 2.
    Fei X, Grummon DS, Ye C, Cheng GJ, Cheng YT (2012) Surface form memory in NiTi shape memory alloys by laser shock indentation. J Mater Sci 47(5):2088–2094CrossRefGoogle Scholar
  3. 3.
    Fabbro R, Fournier J, Ballard P, Devaux D, Virmont J (1990) Physical study of laser-produced plasma in confined geometry. J Appl Phys 68(2):775–784CrossRefGoogle Scholar
  4. 4.
    Leo Donald J (2007) Engineering analysis of smart material systems. Wiley, New JerseyCrossRefGoogle Scholar
  5. 5.
    Ye C, Cheng GJ (2012) Scalable patterning on shape memory alloy by laser shock assisted direct imprinting. Appl Surf Sci 258(24):10042–10046CrossRefGoogle Scholar
  6. 6.
    Anderholm NC (1968) Laser generated pressure waves. Bull Am Phys Soc 13:388Google Scholar
  7. 7.
    Anderholm NC (1970) Laser generated stress waves. Appl Phys Lett 16(3):113–115CrossRefGoogle Scholar
  8. 8.
    Fairand BP, Wilcox BA, Gallagher WJ, Williams DN (1972) Laser shock-induced microstructural and mechanical property changes in 7075 aluminum. J Appl Phys 43(9):3893–3895CrossRefGoogle Scholar
  9. 9.
    Clauer AH, Holbrook JH, Fairand BP (1981) Effects of laser induced shock waves on metals. Shock waves and high-strain-rate phenomena in metals. Springer, New York, pp 675–702CrossRefGoogle Scholar
  10. 10.
    Richard TD (1971) Laser scribing apparatus. US Patent 3,626,141Google Scholar
  11. 11.
    El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074):1326–1330CrossRefGoogle Scholar
  12. 12.
    Wagner RE (1974) Laser drilling mechanics. J Appl Phys 45(10):4631–4637CrossRefGoogle Scholar
  13. 13.
    Hackel L, Rankin J, Racanellia T, Mills T, Campbell JH (2015) Laser peening to improve fatigue strength and lifetime of critical components. Proced Eng 133:545–555CrossRefGoogle Scholar
  14. 14.
    Gujba AK, Medraj M (2014) Laser peening process and its impact on materials properties in comparison with shot peening and ultrasonic impact peening. Materials 7:7925–7974CrossRefGoogle Scholar
  15. 15.
    Nie XF, He WF, Li QP, Long ND, Chai Y (2013) Experiment investigation on microstructure and mechanical properties of TC17 titanium alloy treated by laser shock peening with different laser fluence. J Laser Appl 25:1892–1898CrossRefGoogle Scholar
  16. 16.
    Ge MZ, Xiang JY (2016) Effect of laser shock peening on microstructure and fatigue crack growth rate of AZ31B magnesium alloy. J Alloys Compd 680:544–552CrossRefGoogle Scholar
  17. 17.
    Carpio FJ, Araujo D, Pacheco FJ (2003) Fatigue behavior of laser machined 2024-T3 aeronautic aluminum alloy. Appl Surf Sci 208–209:194–198CrossRefGoogle Scholar
  18. 18.
    Dorman M, Toparli MB, Smyth N, Cini A, Fitzpatrick ME, Irving PE (2012) Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminum sheet containing scribe defects. Mater Sci Eng A 548:142–151CrossRefGoogle Scholar
  19. 19.
    Er AO, Chen J, Tang J, Rentzepis PM (2012) Coherent acoustic wave oscillations and melting on Ag(111) surface by time resolved x-ray diffraction. Appl Phys Lett 100:51910–51915Google Scholar
  20. 20.
    Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113CrossRefGoogle Scholar
  21. 21.
    Li P, Karaca HE, Chumlyakov YI (2017) Orientation dependent compression behavior of Co35Ni35Al30 single crystals. J Alloys Compd 718:326–334CrossRefGoogle Scholar
  22. 22.
    Humbeeck JV (1999) Non-medical applications of shape memory alloys. Mater Sci Eng A 273:134–148CrossRefGoogle Scholar
  23. 23.
    Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H et al (2012) Stimulus-responsive shape memory materials: a review. Mater Des 33:577–640CrossRefGoogle Scholar
  24. 24.
    Kohl M (2010) Shape memory microactuators (microtechnology and MEMS), 1st edn. Springer, HeidelbergGoogle Scholar
  25. 25.
    Kahny H, Huffz MA, Heuer AH (1998) The TiNi shape-memory alloy and its applications for MEMS. Micromech Microeng 8:213CrossRefGoogle Scholar
  26. 26.
    Fujita H, Toshiyoshi H (1998) Micro actuators and their applications. Microelectron J 29:637–640CrossRefGoogle Scholar
  27. 27.
    Butera F, Coda A, Vergani G (2007) Shape memory actuators for automotive applications. Nanotec IT newsletter. AIRI/nanotec IT, RomaGoogle Scholar
  28. 28.
    Leo DJ, Weddle C, Naganathan G, Buckley SJ (1998) Vehicular applications of smart material systems. In: Proceedings of the SPIE, pp 106–116Google Scholar
  29. 29.
    Stoeckel D (1990) Shape memory actuators for automotive applications. Mater Des 11:302–307CrossRefGoogle Scholar
  30. 30.
    Bil C, Massey K, Abdullah EJ (2013) Wing morphing control with shape memory alloy actuators. J Intell Mater Syst Struct 24:879–898CrossRefGoogle Scholar
  31. 31.
    Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng Part G 221:535–552CrossRefGoogle Scholar
  32. 32.
    McDonald Schetky L (1991) Shape memory alloy applications in space systems. Mater Des 12:29–32CrossRefGoogle Scholar
  33. 33.
    Petrini L, Migliavacca F (2011) Biomedical applications of shape memory alloys. J Metall. Google Scholar
  34. 34.
    Song C (2010) History and current situation of shape memory alloys devices for minimally invasive surgery. Open Med Dev J 2:24–31CrossRefGoogle Scholar
  35. 35.
    Morgan NB (2004) Medical shape memory alloy applications-the market and its products. Mater Sci Eng A 378:16–23CrossRefGoogle Scholar
  36. 36.
    Machado LG, Savi MA (2003) Medical applications of shape memory alloys. Braz J Med Biol Res 36:683–691CrossRefGoogle Scholar
  37. 37.
    Mantovani D (2000) Shape memory alloys: properties and biomedical applications. JOM 52:36–44CrossRefGoogle Scholar
  38. 38.
    Duerig T, Pelton A, Stöckel D (1999) An overview of nitinol medical applications. Mater Sci Eng A 273–275:149–160CrossRefGoogle Scholar
  39. 39.
    Lagoudas DC (2008) Shape memory alloy: modeling and engineering applications. Springer, New YorkGoogle Scholar
  40. 40.
    Duering TW, Melton KN, Stöckel D, Wayman CM (eds) (1990) Engineering aspects of shape memory alloys. Butterworth-Heinemann, LondonGoogle Scholar
  41. 41.
    Kim JI, Liu Y, Miyazaki S (2004) Ageing-induced two-stage R-phase transformation in Ti–50.9 at. % Ni. Acta Mater 52(2):487–499CrossRefGoogle Scholar
  42. 42.
    Ni W, Cheng YT, Grummon DS (2003) Microscopic superelastic behavior of a nickel-titanium alloy under complex loading conditions. Appl Phys Lett 82(17):2811CrossRefGoogle Scholar
  43. 43.
    Ma X, Komvopoulos K (2003) Nanoscale pseudoelastic behavior of indented titanium-nickel films. Appl Phys Lett 83(18):3773–3775CrossRefGoogle Scholar
  44. 44.
    Zhang YJ, Cheng YT, Grummon DS (2005) Indentation stress dependence of the temperature range of microscopic superelastic behavior of nickel-titanium thin films. J Appl Phys 98(3):033505CrossRefGoogle Scholar
  45. 45.
    Li P, Karaca HE, Cheng Y-T (2017) Rapid characterization of local shape memory properties through indentation. Sci Rep.
  46. 46.
    Li P, Karaca HE, Cheng YT (2015) Spherical indentation of NiTi-based shape memory alloys. J Alloys Compd 651:724–730CrossRefGoogle Scholar
  47. 47.
    Ni W, Cheng YT, Grummon DS (2002) Recovery of microindents in a nickel-titanium shape-memory alloy: a “self-healing” effect. Appl Phys Lett 80(18):3310–3312CrossRefGoogle Scholar
  48. 48.
    Birnbaum AJ, Yao YL (2010) The effects of laser forming on NiTi superelastic shape memory alloys. J Manuf Sci Eng 132(4):041002CrossRefGoogle Scholar
  49. 49.
    Zhang Y, Cheng YT, Grummon DS (2006) Two-way indent depth recovery in a NiTi shape memory alloy. Appl Phys Lett 88(13):131904CrossRefGoogle Scholar
  50. 50.
    Peyre P, Berthe L, Scherpereel X, Fabbro R, Bartnicki E (1998) Experimental study of laser-driven shock waves in stainless steels. J Appl Phys 84:5985–5992CrossRefGoogle Scholar
  51. 51.
    Millett JCF, Bourne NK, Gray GT, Stevens GS (2002) On the shock response of the shape memory alloy, NiTi. AIP Conf Proc 620:579–582CrossRefGoogle Scholar
  52. 52.
    Seyitliyev D, Li P, Kholikov Kh, Grant B, Karaca HE. Er AO (2017) Laser shock wave assisted patterning on NiTi shape memory alloy surfaces. In: Proceedings of SPIE, vol 10092, pp 1009221Google Scholar
  53. 53.
    Wang Z, Zu X, Feng X, Dai J (2002) Effect of thermomechanical treatment on the two-way shape memory effect of NiTi alloy spring. Mater Lett 54(1):55–61CrossRefGoogle Scholar
  54. 54.
    Smith DL (1995) Thin film deposition: principles and practice. McGraw-Hill, New YorkGoogle Scholar
  55. 55.
    Brown MS, Craig BA (2010) Fundamentals of laser-material interaction and application to multiscale surface modification. Laser Precision Microfab 135:91–120CrossRefGoogle Scholar
  56. 56.
    Chrisey DB, Hubler GK (1994) Pulsed laser deposition of thin films. Wiley, HobokenGoogle Scholar
  57. 57.
    Eason R (2007) Pulsed laser deposition of thin films: applications-led growth of functional materials. Wiley, HobokenGoogle Scholar
  58. 58.
    Tamhankar A, Patel R (2011) Optimization of UV laser scribing process for light emitting diode sapphire wafers. J Laser Appl 23(3):032001CrossRefGoogle Scholar
  59. 59.
    Forsman AC, Banks PS, Perry MD, Campbell EM, Dodell AL, Armas MS (2005) Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals. J Appl Phys 98(3):033302CrossRefGoogle Scholar
  60. 60.
    Titarev VA, Romenski EF, Toro EF (2008) MUSTA-type upwind fluxes for non-linear elasticity. Int J Numer Meth Eng 73:897–926CrossRefGoogle Scholar
  61. 61.
    San O, Kara K (2015) Evaluation of Riemann flux solver for WENO reconstruction schemes: Kelvin–Helmholtz instability. Comput Fluids 117:24–41CrossRefGoogle Scholar
  62. 62.
    Mehmandoust B, Pishevar AR (2009) An eulerian particle level set method for compressible deforming solids with arbitrary EOS. Int J Numer Meth Eng 79(10):1175–1202CrossRefGoogle Scholar
  63. 63.
    Hoashi E, Yokomine T, Shimizu A, Kunugi T (2003) Numerical analysis of wave-type heat transfer propagating in a thin foil irradiated by short-pulsed laser. Int J Heat Mass Trans 46(21):4083–4095CrossRefGoogle Scholar
  64. 64.
    Johnson PB, Christy RW (1974) Optical constants of transition metals. Phys Rev B 9:5056–5070CrossRefGoogle Scholar
  65. 65.
    Bäuerle DW (2011) Laser processing and chemistry. Springer, BerlinCrossRefGoogle Scholar
  66. 66.
    Kaya I, Tobe H, Karaca HE, Acar E, Chumlyakov Y (2016) Shape memory behavior of [111]-oriented NiTi single crystals after stress-assisted aging. Acta Metall Sin 29(3):282–286CrossRefGoogle Scholar
  67. 67.
    Kaya I, Tobe H, Karaca HE, Nagasako M, Chumlyakov Y (2015) Positive and negative two-way shape memory effect in [111]-oriented Ni51Ti49 single crystals. Mater Sci Eng A 639:42–53CrossRefGoogle Scholar
  68. 68.
    Atli KC, Karaman I, Noebe RD, Bigelow G, Gaydosh D (2015) Work production using the two-way shape memory effect in NiTi and a Ni-rich NiTiHf high-temperature shape memory alloy. Smart Mater Struct 24(12):125023CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Saidjafarzoda Ilhom
    • 1
  • Dovletgeldi Seyitliyev
    • 1
  • Khomidkohodza Kholikov
    • 1
  • Zachary Thomas
    • 1
  • Ali O. Er
    • 1
  • Peizhen Li
    • 2
  • Haluk E. Karaca
    • 2
  • Omer San
    • 3
  1. 1.Physics and Astronomy DepartmentWestern Kentucky UniversityKentuckyUSA
  2. 2.Department of Mechanical EngineeringUniversity of KentuckyLexingtonUSA
  3. 3.Mechanical and Aerospace EngineeringOklahoma State UniversityStillwaterUSA

Personalised recommendations