Advertisement

Shape Memory and Superelasticity

, Volume 5, Issue 1, pp 16–31 | Cite as

A Kinetic Study on the Evolution of Martensitic Transformation Behavior and Microstructures in Ti–Ta High-Temperature Shape-Memory Alloys During Aging

  • Alexander PaulsenEmail author
  • Jan Frenzel
  • Dennis Langenkämper
  • Ramona Rynko
  • Peter Kadletz
  • Lukas Grossmann
  • Wolfgang W. Schmahl
  • Christoph Somsen
  • Gunther Eggeler
Special Issue: HTSMA 2018
  • 95 Downloads

Abstract

Ti–Ta alloys represent candidate materials for high-temperature shape-memory alloys (HTSMAs). They outperform several other types of HTSMAs in terms of cost, ductility, and cold workability. However, Ti–Ta alloys are characterized by a relatively fast microstructural degradation during exposure to elevated temperatures, which gives rise to functional fatigue. In the present study, we investigate how isothermal aging affects the martensitic transformation behavior and microstructures in Ti70Ta30 HTSMAs. Ti–Ta sheets with fully recrystallized grain structures were obtained from a processing route involving arc melting, heat treatments, and rolling. The final Ti–Ta sheets were subjected to an extensive aging heat treatment program. Differential scanning calorimetry and various microstructural characterization techniques such as scanning electron microscopy, transmission electron microscopy, conventional X-ray, and synchrotron diffraction were used for the characterization of resulting material states. We identify different types of microstructural evolution processes and their effects on the martensitic and reverse transformation. Based on these results, an isothermal time temperature transformation (TTT) diagram for Ti70Ta30 was established. This TTT plot rationalizes the dominating microstructural evolution processes and related kinetics. In the present work, we also discuss possible options to slow down microstructural and functional degradation in Ti–Ta HTSMAs.

Keywords

High-temperature shape-memory alloys Martensitic transformation Microstructure Phase stability Precipitation Omega phase 

Notes

Acknowledgements

The authors acknowledge financial support from Deutsche Forschungsgemeinschaft (DFG) through Projects TP1 (FR2675/3-2), TP2 (SO505/2-2 and EG101/22-2), and TP3 (SCHM930/13-2) in the framework of the research group FOR 1766 “Hochtemperatur-Formgedächtnislegierungen.” We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Parts of this research were carried out at PETRA III and we would like to thank Jozef Bednarcik for assistance in using photon beamline P02.1 and the support laboratory.

References

  1. 1.
    Funakubo H (1987) Shape memory alloys. Gordon and Breach, New YorkGoogle Scholar
  2. 2.
    Wayman CM, Deurig TW (1990) An introduction to martensite and shape memory. In: Duerig TW, Melton KN, Stöckel D, Wayman CM (eds) Engineering aspects of shape memory alloys. Butterworth-Heinemann, LondonGoogle Scholar
  3. 3.
    Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678CrossRefGoogle Scholar
  4. 4.
    Miyazaki S, Otsuka K (1989) Development of shape memory alloys. ISIJ Int 29(5):353–377CrossRefGoogle Scholar
  5. 5.
    Mohd Jani J, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113CrossRefGoogle Scholar
  6. 6.
    Morgan NB (2004) Medical shape memory alloy applications—the market and its products. Mater Sci Eng, A 378(1–2):16–23CrossRefGoogle Scholar
  7. 7.
    Duerig TW (2002) The use of superelasticity in modern medicine. MRS Bull 27(2):101–104CrossRefGoogle Scholar
  8. 8.
    Van Humbeeck J (1999) Non-medical applications of shape memory alloys. Mater Sci Eng, A 273–275:134–148CrossRefGoogle Scholar
  9. 9.
    Bhattacharya K (2004) Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press, OxfordGoogle Scholar
  10. 10.
    Borboni A, Faglia R (2018) Robust design of a shape memory actuator with slider and slot layout and passive cooling control. Microsyst Technol 24(3):1379–1389CrossRefGoogle Scholar
  11. 11.
    Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315CrossRefGoogle Scholar
  12. 12.
    Yuan ZS, Lin DZ, Cui Y et al (2018) Research progress on the phase transformation behavior, microstructure and property of NiTi based high temperature shape memory alloys. Rare Met Mat Eng 47(7):2269–2274Google Scholar
  13. 13.
    Ronald N, Tiffany B, Santo P (2006) NiTi-based high-temperature shape-memory alloys. In: Soboyejo WO, Srivatsan TS (eds) Advanced structural materials. CRC Press, Boca RatonGoogle Scholar
  14. 14.
    Firstov GS, Van Humbeeck J, Koval YN (2004) High-temperature shape memory alloys: some recent developments. Mater Sci Eng, A 378(1–2):2–10CrossRefGoogle Scholar
  15. 15.
    Bucsek AN, Hudish GA, Bigelow GS, Noebe RD, Stebner AP (2016) Composition, compatibility, and the functional performances of ternary NiTiX high-temperature shape memory alloys. Shape Mem Superelast 2(1):62–79CrossRefGoogle Scholar
  16. 16.
    Buenconsejo PJS, Ludwig A (2014) Composition–structure–function diagrams of Ti–Ni–Au thin film shape memory alloys. ACS Comb Sci 16(12):678–685CrossRefGoogle Scholar
  17. 17.
    Monroe JA, Karaman I, Lagoudas DC, Bigelow G, Noebe RD, Padula S II (2011) Determining recoverable and irrecoverable contributions to accumulated strain in a NiTiPd high-temperature shape memory alloy during thermomechanical cycling. Scripta Mater 65(2):123–126CrossRefGoogle Scholar
  18. 18.
    Kumar PK, Lagoudas DC (2010) Experimental and microstructural characterization of simultaneous creep, plasticity and phase transformation in Ti50Pd40Ni10 high-temperature shape memory alloy. Acta Mater 58(5):1618–1628CrossRefGoogle Scholar
  19. 19.
    Lin B, Gall K, Maier HJ, Waldron R (2009) Structure and thermomechanical behavior of NiTiPt shape memory alloy wires. Acta Biomater 5(1):257–267CrossRefGoogle Scholar
  20. 20.
    Evirgen A, Pons J, Karaman I, Santamarta R, Noebe R (2018) H-phase precipitation and martensitic transformation in Ni-rich Ni–Ti–Hf and Ni–Ti-Zr High-temperature shape memory alloys. Shape Mem Superelast 4(1):85–92CrossRefGoogle Scholar
  21. 21.
    Santamarta R, Evirgen A, Perez-Sierra AM et al (2015) Effect of thermal treatments on Ni-Mn-Ga and Ni-rich Ni-Ti-Hf/Zr high-temperature shape memory alloys. Shape Mem Superelast 1(4):418–428CrossRefGoogle Scholar
  22. 22.
    Elahinia M, Moghaddam NS, Amerinatanzi A et al (2018) Additive manufacturing of NiTiHf high temperature shape memory alloy. Scr Mater 145:90–94CrossRefGoogle Scholar
  23. 23.
    Zhang X, Wang Q, Zhao X, Wang F, Liu QS (2018) Study of Cu-Al-Ni-Ga as high-temperature shape memory alloys. Appl Phys A 124(3):6CrossRefGoogle Scholar
  24. 24.
    Jiang HX, Wang CP, Xu WW et al (2017) Alloying effects of Ga on the Co-V-Si high-temperature shape memory alloys. Mater Des 116:300–308CrossRefGoogle Scholar
  25. 25.
    Perez-Checa A, Feuchtwanger J, Barandiaran JM, Sozinov A, Ullakko K, Chernenko VA (2018) Ni-Mn-Ga-(Co, Fe, Cu) high temperature ferromagnetic shape memory alloys: effect of Mn and Ga replacement by Cu. Scr Mater 154:131–133CrossRefGoogle Scholar
  26. 26.
    Cortie MB, Kealley CS, Bhatia V, Thorogood GJ, Elcombe MM, Avdeev M (2011) High temperature transformations of the Au7Cu5Al4 shape-memory alloy. J Alloy Compd 509(8):3502–3508CrossRefGoogle Scholar
  27. 27.
    Tan C, Cai W, Tian X (2007) Structural, electronic and elastic properties of NbRu high-temperature shape memory alloys. Scr Mater 56(7):625–628CrossRefGoogle Scholar
  28. 28.
    Van Humbeeck J (1997) Shape memory materials: state of the art and requirements for future applications. J Phys IV 7(C5):C5-3–C5-12Google Scholar
  29. 29.
    Wojcik CC (2009) Properties and heat treatment of high transition temperature Ni-Ti-Hf alloys. J Mater Eng Perform 18(5–6):511–516CrossRefGoogle Scholar
  30. 30.
    Canadinc D, Trehern W, Ozcan H et al (2017) On the deformation response and cyclic stability of Ni50Ti35Hf15 high temperature shape memory alloy wires. Scr Mater 135:92–96CrossRefGoogle Scholar
  31. 31.
    Carl M, Van Doren B, Young ML (2018) In situ synchrotron radiation X-ray diffraction study on phase and oxide growth during a high temperature cycle of a NiTi-20 at.% Zr high temperature shape memory alloy. Shape Mem Superelast 4(1):174–185CrossRefGoogle Scholar
  32. 32.
    Buenconsejo PJS, Kim HY, Miyazaki S (2011) Novel beta-TiTaAl alloys with excellent cold workability and a stable high-temperature shape memory effect. Scr Mater 64(12):1114–1117CrossRefGoogle Scholar
  33. 33.
    Zhang J, Rynko R, Frenzel J, Somsen C, Eggeler G (2014) Ingot metallurgy and microstructural characterization of Ti–Ta alloys. Int J Mater Res 105(2):156–167CrossRefGoogle Scholar
  34. 34.
    Lütjering G, Williams JC (2007) Titanium. Springer, HeidelbergGoogle Scholar
  35. 35.
    Kim HY, Miyazaki S (2018) Ni-free Ti-based shape memory alloys. Butterworth-Heinemann, OxfordGoogle Scholar
  36. 36.
    Murray JL (1981) The Ta-Ti (Tantalum-Titanium) system. Bull Alloy Phase Diagr 2(1):62–66CrossRefGoogle Scholar
  37. 37.
    Bagarjatskii Y, Nosova G, Tagunova T (1958) Laws of formation of metastable phase in titanium alloys. Dokl Akad Nauk SSSR 122(4):593–596Google Scholar
  38. 38.
    Petrzhik M, Fedotov S, Kovneristyi YK, Zhebyneva N (1992) Effect of thermal cycling on the structure of quenched alloys of the Ti−Ta−Nb system. Met Sci Heat Treat 34(3):190–193CrossRefGoogle Scholar
  39. 39.
    Kim HY, Fukushima T, Buenconsejo PJS, Nam T-H, Miyazaki S (2011) Martensitic transformation and shape memory properties of Ti-Ta-Sn high temperature shape memory alloys. Mater Sci Eng, A 528(24):7238–7246CrossRefGoogle Scholar
  40. 40.
    Buenconsejo PJS, Kim HY, Miyazaki S (2009) Effect of ternary alloying elements on the shape memory behavior of Ti-Ta alloys. Acta Mater 57(8):2509–2515CrossRefGoogle Scholar
  41. 41.
    Buenconsejo PJS, Kim HY, Hosoda H, Miyazaki S (2009) Shape memory behavior of Ti-Ta and its potential as a high-temperature shape memory alloy. Acta Mater 57(4):1068–1077CrossRefGoogle Scholar
  42. 42.
    Chakraborty T, Rogal J, Drautz R (2015) Martensitic transformation between competing phases in Ti-Ta alloys: a solid-state nudged elastic band study. J Phys: Condens Matter 27:115401Google Scholar
  43. 43.
    Chakraborty T, Rogal J, Drautz R (2016) Unraveling the composition dependence of the martensitic transformation temperature: a first-principles study of Ti-Ta alloys. Phys Rev B 94(22):224104CrossRefGoogle Scholar
  44. 44.
    Ferrari A, Paulsen A, Frenzel J, Rogal J, Eggeler G, Drautz R (2018) Unusual composition dependence of transformation temperatures in Ti-Ta-X shape memory alloys. Phys Rev Mater 2(7):073609CrossRefGoogle Scholar
  45. 45.
    Rynko R, Marquardt A, Paulsen A, Frenzel J, Somsen C, Eggeler G (2015) Microstructural evolution in a Ti–Ta high-temperature shape memory alloy during creep. Int J Mater Res 106(4):331–341CrossRefGoogle Scholar
  46. 46.
    Niendorf T, Krooss P, Batyrsina E et al (2014) On the functional degradation of binary titanium-tantalum high-temperature shape memory alloys—a new concept for fatigue life extension. Funct Mater Lett 7(4):1450042CrossRefGoogle Scholar
  47. 47.
    Niendorf T, Krooss P, Batyrsina E et al (2015) Functional and structural fatigue of titanium tantalum high temperature shape memory alloys (HT SMAs). Mater Sci Eng, A 620:359–366CrossRefGoogle Scholar
  48. 48.
    Niendorf T, Krooß P, Somsen C et al (2015) Cyclic degradation of titanium–tantalum high-temperature shape memory alloys—the role of dislocation activity and chemical decomposition. Funct Mater Lett 8(6):1550062CrossRefGoogle Scholar
  49. 49.
    Maier HJ, Karsten E, Paulsen A et al (2017) Microstructural evolution and functional fatigue of a Ti-25Ta high-temperature shape memory alloy. J Mater Res 32(23):4287–4295CrossRefGoogle Scholar
  50. 50.
    Abkowitz S, Abkowitz SM, Fisher H, Allen SM (2008) The potential of titanium-tantalum alloys for implantable medical devices. Med Device Mater Iv:124–129Google Scholar
  51. 51.
    Li YC, Xiong JY, Wong CS, Hodgson PD, Wen C (2009) Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering. Tissue Eng Pt A 15(10):3151–3159CrossRefGoogle Scholar
  52. 52.
    Motemani Y, Kadletz PM, Maier B, et al. (2015) Microstructure, shape memory effect and functional stability of Ti67Ta33 thin films. Adv Eng Mater 17(10):1425-1433Google Scholar
  53. 53.
    Motemani Y, Buenconsejo PJS, Craciunescu C, Ludwig A (2014) High-temperature shape memory effect in Ti-Ta thin films sputter deposited at room temperature. Adv Mater Interfaces 1(3):140019CrossRefGoogle Scholar
  54. 54.
    Sikka SK, Vohra YK, Chidambaram R (1982) Omega-phase in materials. Prog Mater Sci 27(3–4):245–310CrossRefGoogle Scholar
  55. 55.
    Hickman BS (1968) Omega phase precipitation in titanium alloys. J Met 20(8):A121Google Scholar
  56. 56.
    Ohmori Y, Ogo T, Nakai K, Kobayashi S (2001) Effects of ω-phase precipitation on beta → α, α ‘ transformations in a metastable β titanium alloy. Mater Sci Eng, A 312(1–2):182–188CrossRefGoogle Scholar
  57. 57.
    Lai MJ, Tasan CC, Zhang J, Grabowski B, Huang LF, Raabe D (2015) Origin of shear induced β to ω transition in Ti–Nb-based alloys. Acta Mater 92:55–63CrossRefGoogle Scholar
  58. 58.
    Banerjee S, Tewari R, Dey GK (2006) Omega phase transformation—morphologies and mechanisms. Int J Mater Res 97(7):963–977CrossRefGoogle Scholar
  59. 59.
    Li T, Kent D, Sha G, Dargusch MS, Cairney JM (2015) The mechanism of ω-assisted α phase formation in near β-Ti alloys. Scr Mater 104:75–78CrossRefGoogle Scholar
  60. 60.
    Prima F et al (2000) ω precipitation in a beta metastable titanium alloy, resistometric study. Mater Trans, JIM 41(8):1092–1097CrossRefGoogle Scholar
  61. 61.
    Li T, Kent D, Sha G et al (2016) New insights into the phase transformations to isothermal ω and ω-assisted α in near β-Ti alloys. Acta Mater 106:353–366CrossRefGoogle Scholar
  62. 62.
    Collings EW (1975) Magnetic studies of omega-phase precipitation and aging in titanium-vanadium alloys. J Less Common Met 39(1):63–90CrossRefGoogle Scholar
  63. 63.
    Frenzel J, George EP, Dlouhy A, Somsen C, Wagner MFX, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58(9):3444–3458CrossRefGoogle Scholar
  64. 64.
    Lutterotti L (2010) Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction. Nucl Instrum Methods B 268(3–4):334–340CrossRefGoogle Scholar
  65. 65.
    Lutterotti L, Gualtieri A, Aldrighetti S (1996) Rietveld refinement using Debye-Scherrer film techniques. Eur Powder Differ 228:29–34Google Scholar
  66. 66.
    Dippel AC, Liermann HP, Delitz JT (2015) Beamline P02. 1 at PETRA III for high‐resolution and high‐energy powder diffraction. J Synchrotron Radiat 22(3):675–687CrossRefGoogle Scholar
  67. 67.
    Paulsen A (2019) Herstellung, Eigenschaften und Phastenstabilitäten von Hochtemperaturformgedächtnislegierungen auf Basis von Ti-Ta. Thesis, Ruhr-Universität Bochum, BochumGoogle Scholar
  68. 68.
    Feeney JA, Blackburn MJ (1970) Effect of microstructure on the strength, toughness, and stress-corrosion cracking susceptibility of a metastable beta titanium alloy (Ti−11.5 Mo−6Zr−4.5 Sn). Metall Trans 1(12):3309–3323Google Scholar
  69. 69.
    Rhodes CG, Williams JC (1975) The precipitation of α-phase in metastable β-phase Ti alloys. Metall Trans A 6(11):2103–2114CrossRefGoogle Scholar
  70. 70.
    Williams J, Hickman B, Leslie D (1971) The effect of ternary additions on the decompositon of metastable beta-phase titanium alloys. Metall Trans 2(2):477–484CrossRefGoogle Scholar
  71. 71.
    Chen F, Xu G, Zhang X, Zhou K (2017) Isothermal kinetics of β↔ α transformation in Ti-55531 alloy influenced by phase composition and microstructure. Mater Des 130:302–316CrossRefGoogle Scholar
  72. 72.
    Bönisch M, Panigrahi A, Calin M et al (2017) Thermal stability and latent heat of Nb–rich martensitic Ti-Nb alloys. J Alloy Compd 697:300–309CrossRefGoogle Scholar
  73. 73.
    Aeby-Gautier E, Bruneseaux F, Da Costa Teixeira J, Appolaire B, Geandier G, Denis S (2007) Microstructural formation in Ti alloys: in-situ characterization of phase transformation kinetics. JOM 59(1):54–58CrossRefGoogle Scholar
  74. 74.
    Hui Q, Xue XY, Kou HC, Lai MJ, Tang B, Li JS (2013) Kinetics of the omega phase transformation of Ti-7333 titanium alloy during continuous heating. J Mater Sci 48(5):1966–1972CrossRefGoogle Scholar
  75. 75.
    Wahlbeck PG, Gilles PW (1966) Reinvestigation of the phase diagram for the system titanium-oxygen. J Am Ceram Soc 49(4):180–183CrossRefGoogle Scholar
  76. 76.
    Ikeda M, Komatsu S-Y, Nakamura Y (2002) The effect of Ta content on phase constitution and aging behavior of Ti-Ta binary alloys. Mater Trans 43(12):2984–2990CrossRefGoogle Scholar
  77. 77.
    Ikeda M, Komatsu S-Y, Nakamura Y (2004) Effects of Sn and Zr additions on phase constitution and aging behavior of Ti-50 mass% Ta alloys quenched from β single phase region. Mater Trans 45(4):1106–1112CrossRefGoogle Scholar
  78. 78.
    Barzilai S, Toher C, Curtarolo S, Levy O (2016) Evaluation of the tantalum-titanium phase diagram from ab-initio calculations. Acta Mater 120:255–263CrossRefGoogle Scholar
  79. 79.
    Kadletz PM, Motemani Y, Iannotta J et al (2018) Crystallographic structure analysis of a Ti–Ta thin film materials library fabricated by combinatorial magnetron sputtering. ACS Comb Sci 20(3):137–150CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Alexander Paulsen
    • 1
    Email author
  • Jan Frenzel
    • 1
  • Dennis Langenkämper
    • 1
  • Ramona Rynko
    • 1
  • Peter Kadletz
    • 2
    • 3
  • Lukas Grossmann
    • 2
  • Wolfgang W. Schmahl
    • 2
  • Christoph Somsen
    • 1
  • Gunther Eggeler
    • 1
  1. 1.Institute for MaterialsRuhr University BochumBochumGermany
  2. 2.Applied Crystallography and Materials Science, Department of Earth and Environmental Sciences, Faculty of GeosciencesLudwig-Maximilians-UniversitätMunichGermany
  3. 3.European Spallation Source ESS ERICLundSweden

Personalised recommendations