Shape Memory and Superelasticity

, Volume 4, Issue 4, pp 385–401 | Cite as

A Global Approach for the Fatigue of Shape Memory Alloys

  • Ziad Moumni
  • Yahui Zhang
  • Jun Wang
  • Xiaojun Gu


This review paper, related to previous works of the authors, documents a global approach for structural fatigue of shape memory alloys. It includes two steps. First, a cyclic finite-strain thermomechanically coupled constitutive model is developed in order to compute the asymptotic thermomechanical state. Second, fatigue behavior of SMAs is comprehensively investigated: (i) for low cycle fatigue, strain, and stress-controlled fatigue tests are carried out, the effect of the frequency on low cycle fatigue of SMAs is studied and a strain energy-based low-cycle fatigue criterion is proposed; (ii) for high-cycle fatigue, a shakedown-based high-cycle fatigue criterion is developed to predict whether an SMA structure submitted to high cycle loading would undergo fatigue or not.


Finite strain Thermomechanical coupling High cycle fatigue Low cycle fatigue 


  1. 1.
    Mohd Jani J, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113. CrossRefGoogle Scholar
  2. 2.
    Tokuda M, Ye M, Takakura M, Sittner P (1999) Thermomechanical behavior of shape memory alloy under complex loading conditions. Int J Plast 15(2):223–239. CrossRefGoogle Scholar
  3. 3.
    Sedlak P, Frost M, Benešová B, Ben Zineb T, Šittner P (2012) Thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings. Int J Plast 39:132–151. CrossRefGoogle Scholar
  4. 4.
    Benafan O, Noebe RD, Padula SA II, Garg A, Clausen B, Vogel S, Vaidyanathan R (2013) Temperature dependent deformation of the B2 austenite phase of a NiTi shape memory alloy. International Journal of Plasticity 51:103–121. CrossRefGoogle Scholar
  5. 5.
    Soul H, Isalgue A, Yawny A, Torra V, Lovey FC (2010) Pseudoelastic fatigue of NiTi wires: frequency and size effects on damping capacity. Smart Materials and Structures 19(8):085006CrossRefGoogle Scholar
  6. 6.
    Shaw JA, Kyriakides S (1995) Thermomechanical aspects of NiTi. J Mech Phys Solids 43(8):1243–1281. CrossRefGoogle Scholar
  7. 7.
    Grabe C, Bruhns O (2008) On the viscous and strain rate dependent behavior of polycrystalline NiTi. Int J Solids Struct 45(78):1876–1895. CrossRefGoogle Scholar
  8. 8.
    Morin C, Moumni Z, Zaki W (2011) A constitutive model for shape memory alloys accounting for thermomechanical coupling. International Journal of Plasticity 27(5):748–767. CrossRefGoogle Scholar
  9. 9.
    Morin C, Moumni Z, Zaki W (2011) Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental analysis and constitutive modeling. Int J Plast 27(12):1959–1980. CrossRefGoogle Scholar
  10. 10.
    He YJ, Sun QP (2010) Frequency-dependent temperature evolution in NiTi shape memory alloy under cyclic loading. Smart Mater Struct 19(11):115014. CrossRefGoogle Scholar
  11. 11.
    Pieczyska E, Kowalczyk-Gajewska K, Maj M, Staszczak M, Tobushi H (2014) Thermomechanical Investigation of TiNi Shape Memory Alloy and PU Shape Memory Polymer Subjected to Cyclic Loading. Procedia Engineering 74:287–292. CrossRefGoogle Scholar
  12. 12.
    Yin H, He Y, Sun Q (2014) Effect of deformation frequency on temperature and stress oscillations in cyclic phase transition of NiTi shape memory alloy. J Mech Phys Solids 67:100–128. CrossRefGoogle Scholar
  13. 13.
    Yu C, Kang G, Kan Q, Zhu Y (2015) Rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy: thermo-mechanical coupled and physical mechanism-based constitutive model. Int J Plast 72:60–90. CrossRefGoogle Scholar
  14. 14.
    Kan Q, Yu C, Kang G, Li J, Yan W (2016) Experimental observations on rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy. Mechanics of Mater 97:48–58. CrossRefGoogle Scholar
  15. 15.
    Wang J, Moumni Z, Zhang W (2017) A thermomechanically coupled finite-strain constitutive model for cyclic pseudoelasticity of polycrystalline shape memory alloys. Int J Plast. Google Scholar
  16. 16.
    Zhang Y, You Y, Moumni Z, Anlas G, Zhu J, Zhang W (2017) Experimental and theoretical investigation of the frequency effect on low cycle fatigue of shape memory alloys. Int J Plast 90:1–30. CrossRefGoogle Scholar
  17. 17.
    Hornbogen E (2004) Review thermo-mechanical fatigue of shape memory alloys. J Mater Sci 39(2):385–399. CrossRefGoogle Scholar
  18. 18.
    Zheng L, He Y, Moumni Z (2016) Lu¨ders-like band front motion and fatigue life of pseudoelastic polycrystalline NiTi shape memory alloy. Scripta Mater 123:46–50. CrossRefGoogle Scholar
  19. 19.
    Zheng L, He Y, Moumni Z (2017) Investigation on fatigue behaviors of NiTi polycrystalline strips under stress-controlled tension via in situ macro-band observation. Int J Plast 90:116–145. CrossRefGoogle Scholar
  20. 20.
    Yin H, He Y, Moumni Z, Sun Q (2016) Effects of grain size on tensile fatigue life of nanostructured NiTi shape memory alloy. Int J Fatigue 88:166–177. CrossRefGoogle Scholar
  21. 21.
    Zheng L, He Y, Moumni Z (2016) Effects of lu¨ders-like bands on NiTi fatigue behaviors. Int J Solids Struct 83:28–44. CrossRefGoogle Scholar
  22. 22.
    Zhang S, He Y (2017) Fatigue resistance of branching phase-transformation fronts in pseudoelastic NiTi polycrystalline strips. Int J Solids Struct. Google Scholar
  23. 23.
    Tobushi H, Takafumi N, Shimeno Y, Takahiro H (2000) Low-Cycle Fatigue of TiNi Shape Memory Alloy and Formulation of Fatigue Life. J Eng Mater Technol ASME 122(2):186–191. CrossRefGoogle Scholar
  24. 24.
    Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M (2004) Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng A 378(1–2):24–33. CrossRefGoogle Scholar
  25. 25.
    Matsui R, Tobushi H, Furuichi Y, Horikawa H (2004) Tensile deformation and rotating-bending fatigue properties of a highelastic thin wire, a superelastic thin wire, and a superelastic thin tube of NiTi Alloys. J Eng Mater Technol 126(4):384. CrossRefGoogle Scholar
  26. 26.
    Wagner M, Sawaguchi T, Kaustr¨ater G, H¨offken D, Eggeler G (2004) Structural fatigue of pseudoelastic NiTi shape memory wires. Mater Sci Eng A 378(1–2):105–109. CrossRefGoogle Scholar
  27. 27.
    Zhang Y, Zhu J, Moumni Z, Van Herpen A, Zhang W (2016) Energy-based fatigue model for shape memory alloys including thermomechanical coupling. Smart Mater Struct 25(3):35042CrossRefGoogle Scholar
  28. 28.
    Maletta C, Sgambitterra E, Furgiuele F, Casati R, Tuissi A (2012) Fatigue of pseudoelastic NiTi within the stress-induced transformation regime: a modified coffinmanson approach. Smart Mater Struct 21(11):112001. CrossRefGoogle Scholar
  29. 29.
    Maletta C, Sgambitterra E, Furgiuele F, Casati R, Tuissi A (2014) Fatigue properties of a pseudoelastic NiTi alloy: strain ratcheting and hysteresis under cyclic tensile loading. Int J Fatigue 66:78–85. CrossRefGoogle Scholar
  30. 30.
    Song D, Kang G, Kan Q, Yu C, Zhang C (2015) Damage-based life prediction model for uniaxial low-cycle stress fatigue of super-elastic NiTi shape memory alloy microtubes. Smart Mater Struct 24(8):085007. CrossRefGoogle Scholar
  31. 31.
    Moumni Z, Van Herpen A, Riberty P (2005) Fatigue analysis of shape memory alloys: energy approach. Smart Mater Struct 14(5):S287. CrossRefGoogle Scholar
  32. 32.
    Runciman A, Xu D, Pelton AR, Ritchie RO (2011) An equivalent strain/coffinmanson approach to multiaxial fatigue and life prediction in superelastic nitinol medical devices. Biomaterials 32(22):4987–4993. CrossRefGoogle Scholar
  33. 33.
    Zhang Y, Zhu J, Moumni Z, Herpen AV, Zhang W (2016) Energy-based fatigue model for shape memory alloys including thermomechanical coupling. Smart Mater Struct 25(3):035042. CrossRefGoogle Scholar
  34. 34.
    Song D, Kang G, Yu C, Kan Q, Zhang C (2017) Non-proportional multiaxial fatigue of super-elastic NiTi shape memory alloy micro-tubes: damage evolution law and life-prediction model. Int J Mech Sci 131:325–333. CrossRefGoogle Scholar
  35. 35.
    Pelton A, Schroeder V, Mitchell M, Gong X, Barney M, Robertson S (2008) Fatigue and durability of Nitinol stents. J Mech Behav Biomed Mater 1(2):153–164. CrossRefGoogle Scholar
  36. 36.
    Pelton A (2011) Nitinol fatigue: a review of microstructures and mechanisms. J Mater Eng Perform 20(4–5):613–617. CrossRefGoogle Scholar
  37. 37.
    Robertson S, Pelton A, Ritchie R (2012) Mechanical fatigue and fracture of nitinol. Int Mater Rev 57(1):1–37. CrossRefGoogle Scholar
  38. 38.
    Dordoni E, Meoli A, Wu W, Dubini G, Migliavacca F, Pennati G, Petrini L (2014) Fatigue behaviour of Nitinol peripheral stents: the role of plaque shape studied with computational structural analyses. Med Eng Phys 36(7):842–849. CrossRefGoogle Scholar
  39. 39.
    Dordoni E, Petrini L, Wu W, Migliavacca F, Dubini G, Pennati G (2015) Computational modeling to predict fatigue behavior of NiTi stents: what do we need? J Funct Biomater 6(2):299–317. CrossRefGoogle Scholar
  40. 40.
    Meoli A, Dordoni E, Petrini L, Migliavacca F, Dubini G, Pennati G (2014) Computational study of axial fatigue for peripheral nitinol stents. J Mater Eng Perform 23(7):2606–2613. CrossRefGoogle Scholar
  41. 41.
    Mahtabi M, Shamsaei N, Mitchell M (2015) Fatigue of Nitinol: the state-of-the-art and ongoing challenges. J Mech Behav Biomed Mater 50:228–254. CrossRefGoogle Scholar
  42. 42.
    Auricchio F, Constantinescu A, Menna C, Scalet G (2016) A shakedown analysis of high cycle fatigue of shape memory alloys. Int J Fatigue 87:112–123. CrossRefGoogle Scholar
  43. 43.
    Zaki W, Moumni Z (2007) A three-dimensional model of the thermomechanical behavior of shape memory alloys. J Mech Phys Solids 55:2455–2490. CrossRefGoogle Scholar
  44. 44.
    Zaki W, Moumni Z (2007) A 3D model of the cyclic thermomechanical behavior of shape memory alloys. J Mech Phys Solids 55(11):2427–2454. CrossRefGoogle Scholar
  45. 45.
    Gu X, Moumni Z, Zaki W, Zhang W (2016) Shakedown based model for high-cycle fatigue of shape memory alloys. Smart Mater Struct 25(11):115012. CrossRefGoogle Scholar
  46. 46.
    Tobushi H, Hachisuka T, Hashimoto T, Yamada S (1998) Cyclic deformation and fatigue of a tini shape- memory alloy wire subjected to rotating bending. J Eng Mater Technol 120(1):64–70CrossRefGoogle Scholar
  47. 47.
    Kan Q, Kang G, Yan W, Dong Y, Yu C (2012) An energy-based fatigue failure model for super-elastic NiTi alloys under pure mechanical cyclic loading. Third International Conference on Smart Materials and Nanotechnology in Engineering, vol 8409. International Society for Optics and Photonics, p 84090FGoogle Scholar
  48. 48.
    Wang J, Moumni Z, Zhang W, Xu Y, Zaki W (2017) A 3D finite-strain-based constitutive model for shape memory alloys accounting for thermomechanical coupling and martensite reorientation. Smart Mater Struct 26(6):065006CrossRefGoogle Scholar
  49. 49.
    Wang J, Moumni Z, Zhang W (2017) A thermomechanically coupled finite-strain constitutive model for cyclic pseudoelasticity of polycrystalline shape memory alloys. Int J Plast. Google Scholar
  50. 50.
    Wang J, Moumni Z, Zhang W, Zaki W (2017) A thermomechanically coupled finite deformation constitutive model for shape memory alloys based on Hencky strain. Int J Eng Sci 117:51–77. CrossRefGoogle Scholar
  51. 51.
    Li ZQ, Sun QP (2002) The initiation and growth of macroscopic martensite band in nano-grained NiTi microtube under tension. Int J Plast 18(11):1481–1498. CrossRefGoogle Scholar
  52. 52.
    Favier D, Liu Y, Orgeas L, Rio G (2002) Mechanical instability of NiTi in tension, compression and shear. IUTAM symposium on mechanics of martensitic phase transformation in solids, Springer, pp 205–212Google Scholar
  53. 53.
    Shaw JA (2002) A thermochemical model for a 1-D shape memory alloy wire with propagating instabilities. Int J Solids Struct 39(5):1275–1305. CrossRefGoogle Scholar
  54. 54.
    Feng X-Q, Sun Q (2007) Shakedown analysis of shape memory alloy structures. Int J Plast 23(2):183–206. CrossRefGoogle Scholar
  55. 55.
    Peigney M (2014) On shakedown of shape memory alloys structures. Ann Solid Struct Mech. Google Scholar
  56. 56.
    Paranjape HM, Bowers ML, Mills MJ, Anderson PM (2017) Mechanisms for phase transformation induced slip in shape memory alloy micro-crystals. Acta Mater 132:444–454. CrossRefGoogle Scholar
  57. 57.
    ASTM F2477-07 (2013) Standard test methods for in vitro pulsatile durability testing of vascular stents. ASTM International, West Conshohocken, PA. Google Scholar
  58. 58.
    Melan E (1936) Theorie statisch unbestimmter Systeme. Sitz Berl Ak Wiss 2:45–68. Google Scholar
  59. 59.
    Koiter W (1960) General theorems for elastic-plastic solids. Prog Solids Mech 11:167–221. Google Scholar
  60. 60.
    Nguyen QS (2003) On shakedown analysis in hardening plasticity. J Mech Phys Solids 51(1):101–125. CrossRefGoogle Scholar
  61. 61.
    Peigney M (2010) Shakedown theorems and asymptotic behaviour of solids in non-smooth mechanics. Eur J Mech A Solids 29(5):784–793. CrossRefGoogle Scholar
  62. 62.
    Peigney M (2014) On shakedown of shape memory alloys with permanent inelasticity. In: 11th world conference on computational mechanics, 5th European conference on computational mechanics, 6th European conference on computational fluid dynamics, Barcelone, Spain, pp 1863–1871.
  63. 63.
    Dang Van K (1973) Sur la r´esistance `a la fatigue des m´etaux. Sciences et Techniques de l’Armement: M´emorial de l’Artillerie Fran¸caise. Available via = HM_5ewEACAAJ. = HM_5ewEACAAJ
  64. 64.
    Otsuka K, Wayman C (eds) (1999) Shape memory materials. Cambridge University Press, CambridgeGoogle Scholar
  65. 65.
    Bodaghi M, Damanpack A, Aghdam M, Shakeri M (2013) A phenomenological SMA model for combined axialtorsional proportional/non-proportional loading conditions. Mater Sci Eng A 587:12–26. CrossRefGoogle Scholar
  66. 66.
    Papadopoulos I (1987) Fatigue polycyclique des m´etaux: Une nouvelle approche. Ph.D. Thesis, Ecole Nationale des Ponts et Chauss´ees.

Copyright information

© ASM International 2018

Authors and Affiliations

  • Ziad Moumni
    • 1
    • 2
  • Yahui Zhang
    • 1
    • 2
  • Jun Wang
    • 3
  • Xiaojun Gu
    • 3
  1. 1.IMSIA, UMR 8193, CNRS-EDF-CEA-ENSTA, Université Paris SaclayPalaiseau CedexFrance
  2. 2.State IJR Center of Aerospace Design and Additive Manufacturing, Northwestern Polytechnical UniversityXi’anChina
  3. 3.Institute of Intelligence Material and Structure, Unmanned System TechnologiesNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations