Shape Memory and Superelasticity

, Volume 3, Issue 3, pp 264–273 | Cite as

Investigation of the Dissolution–Reformation Cycle of the Passive Oxide Layer on NiTi Orthodontic Archwires

  • B. Uzer
  • O. Birer
  • D. CanadincEmail author


Dissolution–reformation cycle of the passive oxide layer on the nickel–titanium (NiTi) orthodontic archwires was investigated, which has recently been recognized as one of the key parameters dictating the biocompatibility of archwires. Specifically, commercially available NiTi orthodontic archwires were immersed in artificial saliva solutions of different pH values (2.3, 3.3, and 4.3) for four different immersion periods: 1, 7, 14, and 30 days. Characterization of the virgin and tested samples revealed that the titanium oxide layer on the NiTi archwire surfaces exhibit a dissolution–reformation cycle within the first 14 days of the immersion period: the largest amount of Ni ion release occurred within the first week of immersion, while it significantly decreased during the reformation period from day 7 to day 14. Furthermore, the oxide layer reformation was catalyzed on the grooves within the peaks and valleys due to relatively larger surface energy of these regions, which eventually decreased the surface roughness significantly within the reformation period. Overall, the current results clearly demonstrate that the analyses of dissolution–reformation cycle of the oxide layer in orthodontic archwires, surface roughness, and ion release behavior constitute utmost importance in order to ensure both the highest degree of biocompatibility and an efficient medical treatment.


NiTi Shape memory alloy Orthodontic archwire Dissolution–reformation cycle Oxide layer Biocompatibility Ion release 



D. Canadinc and O. Birer acknowledge the financial support provided by the Turkish Academy of Sciences (TÜBA) within the Outstanding Young Scientist Program (GEBİP). B. Uzer acknowledges the financial support provided by the Scientific and Technological Research Council of Turkey (TÜBİTAK) within the National Graduate Student Fellowship Program 2211. The SEM, EDX, AFM, and XPS analyses were carried out at Koç University Surface Science and Technology Center (KUYTAM).


  1. 1.
    Tian H, Schryvers D, Liu D, Jiang Q, Van Humbeeck J (2011) Stability of Ni in nitinol oxide surfaces. Acta Biomater 7(2):892–899CrossRefGoogle Scholar
  2. 2.
    Toker SM, Canadinc D, Maier HJ, Birer O (2014) Evaluation of passive oxide layer formation-biocompatibility relationship in NiTi shape memory alloys: geometry and body location dependency. Mater Sci Eng C 36:118–129CrossRefGoogle Scholar
  3. 3.
    Trepanier C, Venugopalan R, Pelton AR (2000) Corrosion resistance and biocompatibility of passivated NiTi. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  4. 4.
    Zhu L, Trépanier C, Pelton AR, Fino J (2003) Oxidation of nitinol and its effect on corrosion resistance. Med Device Mater. doi: 10.1361/cp2003mpmd156 Google Scholar
  5. 5.
    Machado LG, Savi MA (2003) Medical applications of shape memory alloys. Braz J Med Biol Res 36(6):683–691CrossRefGoogle Scholar
  6. 6.
    Shabalovskaya SA, Rondelli GC, Undisz AL, Anderegg JW, Burleigh TD, Rettenmayr ME (2009) The electrochemical characteristics of native Nitinol surfaces. Biomaterials 30(22):3662–3671CrossRefGoogle Scholar
  7. 7.
    Duerig T (2002) The use of superelasticity in modern medicine. MRS Bull 27(02):101–104CrossRefGoogle Scholar
  8. 8.
    Ryhänen J, Niemi EUOO, Serlo W, Niemelä E, Sandvik P, Pernu H, Salo T (1997) Biocompatibility of nickel-titanium shape memory metal and its corrosion behavior in human cell cultures. J Biomed Mater Res 35(4):451–457CrossRefGoogle Scholar
  9. 9.
    Toker SM, Canadinc D (2014) Evaluation of biocompatibility of NiTi dental wires: a comparison of laboratory experiments and clinical conditions. Mater Sci Eng C 40:142–147CrossRefGoogle Scholar
  10. 10.
    Wever DJ, Veldhuizen AG, Sanders MM, Schakenraad JM, Van Horn JR (1997) Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy. Biomaterials 18(16):1115–1120CrossRefGoogle Scholar
  11. 11.
    Otsuka K, Ren X (1999) Recent developments in the research of shape memory alloys. Intermetallics 7(5):511–528CrossRefGoogle Scholar
  12. 12.
    Petrini L, Migliavacca F (2011) Biomedical applications of shape memory alloys. J Metall. doi: 10.1155/2011/501483 Google Scholar
  13. 13.
    Shabalovskaya SA, Tian H, Anderegg JW, Schryvers DU, Carroll WU, Van Humbeeck J (2009) The influence of surface oxides on the distribution and release of nickel from Nitinol wires. Biomaterials 30(4):468–477CrossRefGoogle Scholar
  14. 14.
    Hu T, Chu C, Xin Y, Wu S, Yeung KW, Chu PK (2010) Corrosion products and mechanism on NiTi shape memory alloy in physiological environment. J Mater Res 25:350–358CrossRefGoogle Scholar
  15. 15.
    Li X, Wang J, Han EH, Ke W (2007) Influence of fluoride and chloride on corrosion behavior of NiTi orthodontic wires. Acta Biomater 3(5):807–815CrossRefGoogle Scholar
  16. 16.
    Ma FY (2012) Corrosive effects of chlorides on metals. INTECH Open Access Publisher, RijekaCrossRefGoogle Scholar
  17. 17.
    Uzer B, Gumus B, Toker SM, Sahbazoglu D, Saher D, Yildirim C, Polat-Altintas S, Canadinc D (2016) A critical approach to the biocompatibility testing of NiTi orthodontic archwires. Int J Metall Metal Phys 1:1–7Google Scholar
  18. 18.
    Wang J, Li N, Rao G, Han EH, Ke W (2007) Stress corrosion cracking of NiTi in artificial saliva. Dent Mater 23(2):133–137CrossRefGoogle Scholar
  19. 19.
    Castro RM, Smith Neto P, Horta MCR, Pithon MM, Oliveira DD (2013) Comparison of static friction with self-ligating, modified slot design and conventional brackets. J Appl Oral Sci 21(4):314–319CrossRefGoogle Scholar
  20. 20.
    Bourauel C, Fries T, Drescher D, Plietsch R (1998) Surface roughness of orthodontic wires via atomic force microscopy, laser specular reflectance, and profilometry. Eur J Orthod 20(1):79–92CrossRefGoogle Scholar
  21. 21.
    Hanawa T (1999) In vivo metallic biomaterials and surface modification. Mater Sci Eng, A 267(2):260–266CrossRefGoogle Scholar
  22. 22.
    Kim H, Johnson JW (1999) Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires. Angle Orthod 69(1):39–44Google Scholar
  23. 23.
    Huang HH (2005) Surface characterizations and corrosion resistance of nickel-titanium orthodontic archwires in artificial saliva of various degrees of acidity. J Biomed Mater Res 74(4):629–639CrossRefGoogle Scholar
  24. 24.
    Schipper RG, Silletti E, Vingerhoeds MH (2007) Saliva as research material: biochemical, physicochemical and practical aspects. Arch Oral Biol 52(2):1114–1135CrossRefGoogle Scholar
  25. 25.
    Dodds MW, Johnson DA, Yeh CK (2005) Health benefits of saliva: a review. J Dent 33(3):223–233CrossRefGoogle Scholar
  26. 26.
    Diaz-Arnold AM, Marek CA (2002) The impact of saliva on patient care: a literature review. J Prosthet Dent 88(3):337–343CrossRefGoogle Scholar
  27. 27.
    Chicharro JL, Lucía A, Pérez M, Vaquero AF, Ureña R (1998) Saliva composition and exercise. Sports Med 26(1):17–27CrossRefGoogle Scholar
  28. 28.
    Chiappin S, Antonelli G, Gatti R, Elio F (2007) Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clin Chim Acta 383(1):30–40CrossRefGoogle Scholar
  29. 29.
    Onal O, Gumus B, Aksoy B, Gerstein G, Alaca BE, Maier HJ, Canadinc D (2016) Micro-scale cyclic bending response of NiTi shape memory ally. Mater Trans 57(3):472–475CrossRefGoogle Scholar
  30. 30.
    Corbett RA (2005) Corrosion tests and standards: application and interpretation-second edition. ASTM International, West ConshohockenGoogle Scholar
  31. 31.
    Huang HH, Chiu YH, Lee TH, Wu SC, Yang HW, Su KH, Hsu CC (2003) Ion release from NiTi orthodontic wires in artificial saliva with various acidities. Biomaterials 24(20):3585–3592CrossRefGoogle Scholar
  32. 32.
    Kuhta M, Pavlin D, Slaj M, Varga S, Lapter-Varga M, Slaj M (2009) Type of archwire and level of acidity: effects on the release of metal ions from orthodontic appliances. Angle Orthod 79(1):102–110CrossRefGoogle Scholar
  33. 33.
    Firstov GS, Vitchev RG, Kumar H, Blanpain B, Van Humbeeck J (2002) Surface oxidation of NiTi shape memory alloy. Biomaterials 23(24):4863–4871CrossRefGoogle Scholar
  34. 34.
    Ryhänen J (1999) Biocompatibility evaluation of nickel-titanium shape memory metal alloy. Springer, BerlinGoogle Scholar
  35. 35.
    Huang HH (2003) Corrosion resistance of stressed NiTi and stainless steel orthodontic wires in acid artificial saliva. J Biomed Mater Res Part A 66(4):829–839CrossRefGoogle Scholar
  36. 36.
    Trepanier C, Tabrizian M, Yahia LH, Bilodeau L, Piron DL (1998) Effect of modification of oxide layer on NiTi stent corrosion resistance. J Biomed Mater Res 43(4):433–440CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  1. 1.Advanced Materials Group (AMG), Department of Mechanical EngineeringKoç UniversityIstanbulTurkey
  2. 2.Department of ChemistryKoç UniversityIstanbulTurkey
  3. 3.Koç University Surface Science and Technology Center (KUYTAM)IstanbulTurkey

Personalised recommendations