Advertisement

Intriguing minerals: photoinduced solid-state transition of realgar to pararealgar—direct atomic scale observation and visualization

  • 11 Accesses

Abstract

This lecture text is aimed at teaching some insight into phase transitions of minerals. It summarizes the results of a detailed study of the reaction mechanism of photoinduced solid-state transformation of the mineral realgar (α-As4S4) to its distinct polymorph pararealgar by a combination of in situ single-crystal X-ray photodiffraction, Fourier transform infrared spectroscopy, and micro-Raman spectroscopy. The process of transformation takes place in four steps. The initiating photoreaction step requires oxygen and thereby the intermediate uzonite (As4S5) and arsenolite (As2O3) are obtained (step 1). The process continues through a set of cyclic reactions in which the sulfur atom released by the decomposition of As4S5 (step 2) reacts with a molecule of realgar to produce a molecule of pararealgar (step 3), whereupon a sulfur atom is released which continues the process (step 4). The photodiffraction technique provides direct atomic resolution evidence of formation of intermediate As4S5 phase in which half of the realgar molecule retains its envelope-type conformation, while the geometry of the other half is transformed by effective switching of positions of one sulfur and one arsenic atom. The migration (hopping) of sulfur atoms between the molecules of the single crystal of realgar is observed and visualized.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Gaffney JS, Marley NA (2020) Chemistry of environmental systems: fundamental principles and analytical methods, 1st edn. Wiley, Hoboken

  2. 2.

    Chabay RW, Sherwood BA (2011) Matter and interactions, 3rd edn. Wiley, Hoboken

  3. 3.

    Hill WT, Lee CH (2007) Light-matter interaction: atoms and molecules in external fields and nonlinear optics. Wiley-VCH Verlag, Winheim

  4. 4.

    Nesse WD (2000) Introduction to mineralogy. Oxford University Press, Oxford

  5. 5.

    Jovanovski G, Boev B, Makreski P (2012) Minerals from the Republic of Macedonia with an introduction to mineralogy. Macedonian Academy of Sciences and Arts, Skopje

  6. 6.

    http://webmineral.com. Accessed 10 Dec 2019

  7. 7.

    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–164

  8. 8.

    David IFW, Ibberson RM, Matthewman JC, Prassides K, Dennis TJS, Hare JP, Kroto HW, Taylor R, Walton DRM (1991) Crystal structure and bonding of ordered C60. Nature 353:147–149

  9. 9.

    Lohani S, Grant DJW (2006) Thermodynamics of polymorphs. In: Hilfiker R (ed) Polymorphism in the pharmaceutical industry. Wiley-VCH Verlag, Weiheim, pp 21–42

  10. 10.

    Carletta A, Meinguet C, Wouters J, Tilborg A (2015) Solid-state investigation of polymorphism and tautomerism of phenylthiazole-thione: a combined crystallographic, calorimetric and theoretical survey. Cryst Growth Des 15:2461–2473

  11. 11.

    Bernstein J (2011) Polymorphism—a perspective. Cryst Growth Des 11:632–650

  12. 12.

    Thakuria R, Thakur TS (2017) Crystal polymorphism in pharmaceutical science. In: Atwood JL (ed) Comprehensive supramolecular chemistry, vol II, 5. Elsevier, Oxford, pp 283–309

  13. 13.

    Dunitz JD, Bernstein J (1995) Disappearing polymorphs. Acc Chem Res 28:193–200

  14. 14.

    Karpinski PH (2006) Polymorphism of active pharmaceutical ingredients. ChemEngTechnol 29:233–237

  15. 15.

    Raza K, Kumar P, Ratan S, Malik R, Arora S (2014) Polymorphism: the phenomenon affecting the performance of drugs. SOJ Pharm Pharma Sci 1:1–10

  16. 16.

    https://www.britannica.com/print/article/383675. Accessed 10 Dec 2019

  17. 17.

    Oxtoby DW (1992) Homogeneous nucleation: theory and experiment. J Phys Condens Matter 4:7627–7650

  18. 18.

    Milchev A (2016) Nucleation phenomena in electrochemical systems: thermodynamic concepts. ChemTexts 2:2

  19. 19.

    Milchev A (2016) Nucleation phenomena in electrochemical systems: kinetic models. ChemTexts 2:4

  20. 20.

    Chern GC, Lauks I (1982) Spin-coated amorphous-chalcogenide films. J Appl Phys 53:6979–6982

  21. 21.

    De Neufville JP, Moss SC, Ovshinski SR (1973) Photostructural transformations in amorphous As2Se3 and As2S3 films. J Non-Cryst Solids 13:191–223

  22. 22.

    Kolobov AV (1993) Photo-induced atomic processes in vitreous chalcogenides. J Non-Cryst Solids 164–166:1159–1164

  23. 23.

    Kobelke J, Jetschke S, Schwuchow A, Kirchhof J, Schuster K (2003) Arsenic sulfide single mode fibres for 13 μm amplification: preparation—gain potential—power stability limits. J Non-Cryst Solids 326(327):446–450

  24. 24.

    Nguyen VQ, Sanghera JS, Cole B, Pureza P, Kung FH, Aggarwal ID (2002) J Am Ceram Soc 85:2056–2058

  25. 25.

    Spalt Z, Alberti M, Pena-Mendez E, Havel J (2005) Laser ablation generation of arsenic and arsenic sulfide clusters. Polyhedron 24:1417–1424

  26. 26.

    Hall HT (1966) Ph.D. Thesis. Brown University, Providence

  27. 27.

    Clark AH (1970) Alpha-arsenic sulfide, from Mina Alacran, Pampa Larga, Chile. Am Mineral 55:1338–1344

  28. 28.

    Mullen DJE, Nowacki W (1972) Refinement of the crystal structures of realgar, AsS and orpiment, As2S3. Z Kristallogr 136:48–65

  29. 29.

    Ito T, Morimoto N, Sadanaga R (1952) The crystal structure of realgar. Acta Crystallogr 5:775–782

  30. 30.

    Roland GW (1972) Concerning the α-As-S ↔ realgar inversion. Can Mineral 11:520–525

  31. 31.

    Kutoglu A (1976) Darstellung und Kristallstruktur einer neuen isomeren form von As4S4. Z Anorg Allg Chem 419:176–184

  32. 32.

    Roberts AC, Ansell HG, Bonardi M (1980) Pararealgar, a new polymorph of AsS, from British Columbia. Can Mineral 18:525–527

  33. 33.

    Douglass DL, Shing CC, Wang G (1992) The light-induced alteration of realgar to pararealgar. Am Mineral 77:1266–1274

  34. 34.

    Bonazzi P, Menchetti S, Pratesi G (1995) The crystal structure of pararealgar, As4S4. Am Mineral 80:400–403

  35. 35.

    Billes F, Mitsa V, Fejes I, Mateleshko N, Fejsa I (1999) Calculation of the vibrational spectra of arsenic sulfide clusters. J Mol Struct 513:109–115

  36. 36.

    Forneris R (1969) The infrared and Raman spectra of realgar and orpiment. Am Mineral 54:1062–1074

  37. 37.

    Šoptrajanov B, Trajkovska M, Jovanovski G, Stafilov T (1994) Infrared spectra of lorandite and some other minerals from Alšar. N Jb Miner Abh 167:329–337

  38. 38.

    Soong R, Farmer VC (1978) The identification of sulphide minerals by infra-red spectroscopy. Mineral Mag 42:M17–M20

  39. 39.

    Muniz-Miranda M, Sbrana G, Bonazzi P, Menchetti S, Pratesi G (1996) Spectroscopic investigation and normal mode analysis of As4S4 polymorphs. Spectrochim Acta A52:1391–1401

  40. 40.

    Banerjee A, Jensen JO, Jensen JL (2003) A theoretical study of As4S4: bonding, vibrational analysis and infrared and Raman spectra. J Mol Struct 626:63–75

  41. 41.

    Mori T, Matsuishi K, Arai T (1984) Vibrational properties and network topology of amorphous As–S system. J Non-Cryst Solids 65:269–283

  42. 42.

    Bues W, Somer M, Brockner WZ (1983) Schwingungsspektren von As4S4 und As4Se4. Z Anorg Allg Chem 499:7–14

  43. 43.

    Scheuermann W, Ritter GJ (1969) Raman spectra of cinnabar (HgS), realgar (As4S4) and orpiment (As2S3). Z Naturforsch 24A:408–411

  44. 44.

    Frost RL, Martens WN, Kloprogge JT (2002) Raman spectroscopic study of cinnabar (HgS), realgar (As4S4), and orpiment (As2S3) at 298 and 77K. N Jb Miner Monat 10:469–480

  45. 45.

    Trentelman K, Stodulski L, Pavlosky M (1996) Characterization of pararealgar and other light-induced transformation products from realgar by Raman microspectroscopy. Anal Chem 68:1755–1761

  46. 46.

    Bonazzi P, Menchetti S, Pratesi G, Muniz-Miranda M, Sbrana G (1996) Light-induced variations in realgar and β-As4S4: X-ray diffraction and Raman studies. Am Mineral 81:874–880

  47. 47.

    Bujňáková Z, Baláž P, Makreski P, Jovanovski G, Čaplovičová M, Čaplovič L, Shpotyuk O, Ingram A, Lee T-C, Cheng J-J, Sedlák J, Turianicová E, Zorkovská A (2015) Arsenic sulfide nanoparticles prepared by milling: properties, free-volume characterization, and anti-cancer effects. J Mater Sci 50:1973–1985

  48. 48.

    Ballirano P, Maras A (2006) In-situ X-ray transmission powder diffraction study of the kinetics of the light induced alteration of realgar (α-As4S4). Eur J Mineral 18:589–599

  49. 49.

    Kyono A, Kimata M, Hatta T (2005) Light-induced degradation dynamics in realgar: in situ structural investigation using single-crystal X-ray diffraction study and X-ray photoelectron spectroscopy. Am Mineral 90:1563–1570

  50. 50.

    Bonazzi P, Bindi L, Olmi F, Menchetti S (2003) How many alacranites do exist? A structural study of non-stoichiometric As8S9−x crystals. Eur J Mineral 15:283–288

  51. 51.

    Kyono A (2007) Experimental study of the effect of light intensity on arsenic sulfide (As4S4) alteration. J Photochem Photobiol A 189:15–22

  52. 52.

    Bindi L, Bonazzi P (2007) Light-induced alteration of arsenic sulfides: a new product with an orthorhombic crystal structure. Am Mineral 92:617–620

  53. 53.

    Bonazzi P, Bindi L, Pratesi G, Menchetti S (2006) Light-induced changes in molecular arsenic sulfides: state of the art and new evidence by single-crystal X-ray diffraction. Am Mineral 91:1323–1330

  54. 54.

    Ballirano P, Maras A (2004) The light-induced alteration of realgar (As4S4): an in situ X-ray powder diffraction investigation. I-kinetics of the process. In: 32nd International geological congress, program and abstract, p 489

  55. 55.

    Bindi L, Popova V, Bonazzi P (2003) Uzonite, As4S5, from the type locality: single-crystal X-ray study and effects of exposure to light. Can Mineral 41:1463–1468

  56. 56.

    Naumov P, Makreski P, Jovanovski G (2007) Direct atomic scale observation of linkage isomerization of As4S4 clusters during the photoinduced transition of realgar to pararealgar. Inorg Chem 46:10624–10631

  57. 57.

    Ohashi Y (1998) Real-time in situ observation of chemical reactions. Acta Crystallogr A 54:842–849

  58. 58.

    Raithby PR (2007) Small-molecule chemical crystallography—from three to four dimensions: a personal perspective. Crystallogr Rev 13:121–142

  59. 59.

    Cole JM (2008) Photocrystallography. Acta Crystallogr A64:259–271

  60. 60.

    Naumov P, Makreski P, Petruševski G, Runčevski T, Jovanovski G (2010) Visualization of a discrete solid-state process with steady-state X-ray diffraction: observation of hopping of sulfur atoms in single crystals of realgar. J Am Chem Soc 132:11398–11401

  61. 61.

    Kaminaga A, Hanazaki I (1997) Photo-induced excitability in the tris-(bipyridyl) ruthenium(II)-catalyzed minimal bromate oscillator. Chem Phys Lett 278:16–20

  62. 62.

    Riehl WJ, Krapivsky PL, Redner S, Segre D (2010) Signatures of arithmetic simplicity in metabolic network architecture. PLOS Comput Biol 6:e1000725

  63. 63.

    Bagyinka C, Oesz J, Szaraz S (2003) Autocatalytic oscillations in the early phase of the photoreduced methyl viologen-initiated fast kinetic reaction of hydrogenase. J Biol Chem 278:20624–20627

  64. 64.

    Farmer JD, Kauffman SA, Packard NH (1986) Autocatalytic replication of polymers. Phys D 22:50–67

  65. 65.

    Kauffman SA (1986) Autocatalytic sets of proteins. J Theor Biol 119:1–24

  66. 66.

    Hordijk W, Steel M (2004) Detecting autocatalytic, self-sustaining sets in chemical reaction systems. J Theor Biol 227:451–461

  67. 67.

    More R, Busse G, Hallmann J, Paulmann C, Scholz M, Techert S (2010) Photodimerization of crystalline 9-anthracenecarboxylic acid: a nontopotactic autocatalytic transformation. J Phys Chem C 114:4142–4148

  68. 68.

    Tazuke S, Kurihara S (1989) Photoinduced phase transition in liquid crystals. Stud Surf Sci Catal 47:435–447

  69. 69.

    Prasad SK, Nair GG, Sandhya KL, Rao DSS (2004) Photoinduced phase transitions in liquid crystalline systems. Curr Sci 86:815–823

  70. 70.

    Prasad SK, Nair GG, Rao DSS (2009) Photoinduced phase transitions. Liq Cryst 39:705–716

  71. 71.

    Petri M, Busse G, Quevedo W, Techert S (2009) Photo-induced phase transitions to liquid crystal phases: influence of the chain length from C8E4 to C14E4. Materials 2:1305–1322

  72. 72.

    Bisoyi HK, Li Q (2016) Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications. Chem Rev 116:15089–15166

  73. 73.

    Ohkoshi S, Tokoro H, Hashimoto K (2005) Temperature- and photo-induced phase transition in rubidium manganese hexacyanoferrate. Coord Chem Rev 249:1830–1840

  74. 74.

    Naumov P, Sakurai K, Asaka T, Belik AA, Adachi S, Takahashi J, Koshihara S (2006) Photoinduced phase transition of coordinationally unsaturated d 9 metal centers within the thermal hysteresis of the spin exchange interaction. Chem Commun 14:1491–1493

  75. 75.

    Macchia A, Campanella L, Gazzoli D, Gravagna E, Maras A, Nunziante S, Rocchia M, Roscioli G (2013) Realgar and light. Procedia Chem 8:185–193

  76. 76.

    Macchia A, Nunziante Cesaro S, Campanella L, Maras A, Rocchia M, Roscioli G (2013) Which light for cultural heritage: comparison of light sources with the respect to realgar photodegradation. J Appl Spectrosc 80:637–643

  77. 77.

    Pratesi G, Zoppi M (2015) An insight into the inverse transformation of realgar altered by light. Am Mineral 100:1222–1229

  78. 78.

    Zoppi M, Pratesi G (2012) The dual behavior of the β-As4S4 altered by light. Am Mineral 97:890–896

  79. 79.

    SAINT-Siemens Area Detector Integration and SMART-Siemens Molecular Analysis Research Tool; Siemens Analytical X-ray Instruments Inc., Madison 1996

  80. 80.

    Altomare A, Cascarano G, Giacovazzo C, Guagliardi A, Burla MC, Polidori G, Camalli M (1994) SIR92—a program for automatic solution of crystal structures by direct methods. J Appl Crystallogr 27:435–436

  81. 81.

    Sheldrick GME (1997) SHELXL-97 structure refinement program. University of Göttingen, Göttingen

  82. 82.

    Farmer VC (1974) The infrared spectra of minerals. Mineralogical Society, London

Download references

Author information

Correspondence to Gligor Jovanovski or Petre Makreski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jovanovski, G., Makreski, P. Intriguing minerals: photoinduced solid-state transition of realgar to pararealgar—direct atomic scale observation and visualization. ChemTexts 6, 5 (2020) doi:10.1007/s40828-019-0100-9

Download citation

Keywords

  • Polymorphs of minerals
  • Phase transitions of polymorphs
  • Realgar–pararealgar
  • Photoinduced solid-state transition
  • Single-crystal X-ray photodiffraction
  • FTIR spectroscopy
  • Raman spectroscopy
  • Sulfur atom migration