, 5:4 | Cite as

Bed electrodes in microbial electrochemistry: setup, operation and characterization

  • Jose Rodrigo Quejigo
  • Sara Tejedor-Sanz
  • Abraham Esteve-Núñez
  • Falk HarnischEmail author
Lecture Text


Microbial electrochemical technologies have become a vital field of interest in the last two decades. Their reactors are of interest for a large community of scientists working in environmental engineering and technology, biochemistry, electrochemistry, physics, mathematical modeling, microbiology and other disciplines. Due to the fascinating fundamentals and the high promises for application at the horizon, the field is increasingly reflected in the curricula of students of the aforementioned disciplines. The main motivation for this article is to give scientists and students an overview on one specific sub-topic: bed electrodes and bed electrode reactors. After a brief introduction, these granulated electrodes are analyzed from an engineering, electrochemical and microbiological point of view. Thereby we guide the potential future operator for deciding which biotechnological processes and applications under which operational conditions (i.e. fixed-bed electrodes versus fluidized bed electrodes) may benefit by using bed electrodes. Special focus is given to the electrochemical and microbial characterization of granules. Thus we discuss a recent tool that opens the possibility to survey the electrochemical behavior of microbial biofilms on bed electrodes—the e-Clamp. Finally, two case studies of bed electrode reactors are briefly discussed.


Bed electrode Microbial electrochemistry Microbial electrochemical technologies Fluidized bed electrode Extracellular electron transfer 



FH acknowledges support by the BMBF (Research Award “Next generation biotechnological Processes—Biotechnology 2020+”) and the Helmholtz-Association (Young Investigators Group). This work was supported by the Helmholtz-Association within the Research Programme Renewable Energies.


  1. 1.
    Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Lond Ser B 84(571):260–276CrossRefGoogle Scholar
  2. 2.
    Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54(6):1472–1480PubMedPubMedCentralGoogle Scholar
  3. 3.
    Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240(4857):1319–1321. CrossRefPubMedGoogle Scholar
  4. 4.
    Schröder U (2011) Discover the possibilities: microbial bioelectrochemical systems and the revival of a 100-year-old discovery. J Solid State Electrochem 15(7):1481–1486. CrossRefGoogle Scholar
  5. 5.
    Schröder U (2018) A basic introduction into microbial fuel cells and microbial electrocatalysis. ChemTexts 4(4):19. CrossRefGoogle Scholar
  6. 6.
    Rosenbaum M, Aulenta F, Villano M, Angenent LT (2011) Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour Technol 102(1):324–333. CrossRefPubMedGoogle Scholar
  7. 7.
    Kim BH, Kim HJ, Hyun MS, Park DH (1999) Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol 9:127–131Google Scholar
  8. 8.
    Koch C, Harnisch F (2016) Is there a specific ecological niche for electroactive microorganisms? ChemElectroChem 3(9):1282–1295. CrossRefGoogle Scholar
  9. 9.
    Carmona-Martínez AA, Harnisch F, Kuhlicke U, Neu TR, Schröder U (2013) Electron transfer and biofilm formation of Shewanella putrefaciens as function of anode potential. Bioelectrochemistry 93:23–29. CrossRefPubMedGoogle Scholar
  10. 10.
    Lovley DR (2011) Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ Sci 4(12):4896–4906. CrossRefGoogle Scholar
  11. 11.
    Estevez-Canales M, Kuzume A, Borjas Z, Fueg M, Lovley D, Wandlowski T, Esteve-Nunez A (2015) A severe reduction in the cytochrome C content of Geobacter sulfurreducens eliminates its capacity for extracellular electron transfer. Environ Microbiol Rep 7(2):219–226. CrossRefPubMedGoogle Scholar
  12. 12.
    Busalmen JP, Esteve-Núñez A, Berná A, Feliu JM (2008) C-type cytochromes wire electricity-producing bacteria to electrodes. Angew Chem Int Ed 47(26):4874–4877CrossRefGoogle Scholar
  13. 13.
    Esteve-Núnez A, Busalmen JP, Berná A, Gutiérrez-Garrán C, Feliu JM (2011) Opportunities behind the unusual ability of Geobacter sulfurreducens for exocellular respiration and electricity production. Energy Environ Sci 4(6):2066–2069CrossRefGoogle Scholar
  14. 14.
    Koch C, Korth B, Harnisch F (2017) Microbial ecology-based engineering of microbial electrochemical technologies. Microb Biotechnol 11(1):22–38. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Aguirre-Sierra A, Bacchetti-De Gregoris T, Berná A, Salas JJ, Aragón C, Esteve-Núñez A (2016) Microbial electrochemical systems outperform fixed-bed biofilters in cleaning up urban wastewater. Environ Sci Water Res Technol 2(6):984–993. CrossRefGoogle Scholar
  16. 16.
    Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337(6095):686–690CrossRefGoogle Scholar
  17. 17.
    Hegner R, Rosa LFM, Harnisch F (2018) Electrochemical CO2 reduction to formate at indium electrodes with high efficiency and selectivity in pH neutral electrolytes. Appl Catal B 238:546–556. CrossRefGoogle Scholar
  18. 18.
    Jourdin L, Freguia S, Flexer V, Keller J (2016) Bringing high-rate, CO2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions. Environ Sci Technol 50(4):1982–1989CrossRefGoogle Scholar
  19. 19.
    Patil SA, Arends JB, Vanwonterghem I, Van Meerbergen J, Guo K, Tyson GW, Rabaey K (2015) Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2. Environ Sci Technol 49(14):8833–8843CrossRefGoogle Scholar
  20. 20.
    Kretzschmar J, Böhme P, Liebetrau J, Mertig M, Harnisch F (2018) Microbial electrochemical sensors for anaerobic digestion process control–performance of electroactive biofilms under real conditions. Chem Eng Technol 41(4):687–695CrossRefGoogle Scholar
  21. 21.
    Rodrigo Quejigo J, Dörfler U, Schroll R, Esteve-Núñez A (2016) Stimulating soil microorganisms for mineralizing the herbicide isoproturon by means of microbial electroremediating cells. Microb Biotechnol 9(3):369–380CrossRefGoogle Scholar
  22. 22.
    Pous N, Balaguer MD, Colprim J, Puig S (2017) Opportunities for groundwater microbial electro-remediation. Microb Biotechnol 11(1):119–135. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Rodrigo Quejigo J, Domínguez-Garay A, Dörfler U, Schroll R, Esteve-Núñez A (2018) Anodic shifting of the microbial community profile to enhance oxidative metabolism in soil. Soil Biol Biochem 116:131–138. CrossRefGoogle Scholar
  24. 24.
    Dominguez-Garay A, Rodrigo Quejigo J, Dorfler U, Schroll R, Esteve-Nunez A (2017) Bioelectroventing: an electrochemical-assisted bioremediation strategy for cleaning-up atrazine-polluted soils. Microb Biotechnol 11(1):50–62. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rodrigo Quejigo J, Boltes K, Esteve-Nuñez A (2014) Microbial-electrochemical bioremediation and detoxification of dibenzothiophene-polluted soil. Chemosphere 101:61–65CrossRefGoogle Scholar
  26. 26.
    Aulenta F, Puig S, Harnisch F (2018) Microbial electrochemical technologies: maturing but not mature. Microb Biotechnol 11(1):18–19CrossRefGoogle Scholar
  27. 27.
    Kerzenmacher S (2017) Engineering of microbial electrodes. Adv Biochem Eng Biotechnol. CrossRefGoogle Scholar
  28. 28.
    Yu YY, Zhai DD, Si RW, Sun JZ, Liu X, Yong YC (2017) Three-dimensional electrodes for high-performance bioelectrochemical systems. Int J Mol Sci 18(1):90. CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Wei J, Liang P, Huang X (2011) Recent progress in electrodes for microbial fuel cells. Bioresour Technol 102(20):9335–9344. CrossRefPubMedGoogle Scholar
  30. 30.
    Wei W, Zhang Y, Komorek R, Plymale A, Yu R, Wang B, Zhu Z, Liu F, Yu XY (2017) Characterization of syntrophic Geobacter communities using ToF-SIMS. Biointerphases 12(5):05g601. CrossRefPubMedGoogle Scholar
  31. 31.
    Chen X, Cui D, Wang X, Wang X, Li W (2015) Porous carbon with defined pore size as anode of microbial fuel cell. Biosens Bioelectron 69:135–141CrossRefGoogle Scholar
  32. 32.
    Hiddleston J, Douglas A (1970) Current/potential relationships and potential distribution in fluidized bed electrodes. Electrochim Acta 15(3):431–443CrossRefGoogle Scholar
  33. 33.
    Hiddleston JN, Douglas AF (1968) Fluidized bed electrodes—fundamental measurements and implications. Nature 218:601. CrossRefGoogle Scholar
  34. 34.
    Berent T, Mason R, Fells I (1971) Fluidised-bed fuel-cell electrodes. J Appl Chem Biotechnol 21(3):71–76CrossRefGoogle Scholar
  35. 35.
    Sedahmed G (1996) Mass transfer behaviour of a fixed bed electrochemical reactor with a gas evolving upstream counter electrode. Can J Chem Eng 74(4):487–492CrossRefGoogle Scholar
  36. 36.
    Ibl N (1983) Current distribution. Comprehensive treatise of electrochemistry. Springer, New York, pp 239–315CrossRefGoogle Scholar
  37. 37.
    Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39(20):8077–8082. CrossRefPubMedGoogle Scholar
  38. 38.
    Tran HT, Ryu JH, Jia YH, Oh SJ, Choi JY, Park DH, Ahn DH (2010) Continuous bioelectricity production and sustainable wastewater treatment in a microbial fuel cell constructed with non-catalyzed granular graphite electrodes and permeable membrane. Water Sci Technol 61(7):1819–1827. CrossRefPubMedGoogle Scholar
  39. 39.
    Liu J, Zhang F, He W, Zhang X, Feng Y, Logan BE (2014) Intermittent contact of fluidized anode particles containing exoelectrogenic biofilms for continuous power generation in microbial fuel cells. J Power Sources 261:278–284. CrossRefGoogle Scholar
  40. 40.
    Deeke A, Sleutels TH, Donkers TF, Hamelers HV, Buisman CJ, Ter Heijne A (2015) Fluidized capacitive bioanode as a novel reactor concept for the microbial fuel cell. Environ Sci Technol 49(3):1929–1935. CrossRefPubMedGoogle Scholar
  41. 41.
    Tejedor-Sanz S, de Gregoris TB, Salas JJ, Pastor L, Esteve-Núñez A (2016) Integrating a microbial electrochemical system into a classical wastewater treatment configuration for removing nitrogen from low COD effluents. Environ Sci Water Res Technol 2(5):884–893CrossRefGoogle Scholar
  42. 42.
    Tejedor-Sanz S, Quejigo JR, Berna A, Esteve-Nunez A (2017) The planktonic relationship between fluid-like electrodes and bacteria: wiring in motion. ChemSusChem 10(4):693–700. CrossRefPubMedGoogle Scholar
  43. 43.
    Tejedor-Sanz S, Ortiz JM, Esteve-Núñez A (2017) Merging microbial electrochemical systems with electrocoagulation pretreatment for achieving a complete treatment of brewery wastewater. Chem Eng J 330:1068–1074. CrossRefGoogle Scholar
  44. 44.
    Tejedor-Sanz S, Fernández-Labrador P, Hart S, Torres CI, Esteve-Núñez A (2018) Geobacter dominates the inner layers of a stratified biofilm on a fluidized anode during brewery wastewater treatment. Front Microbiol. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Di Lorenzo M, Curtis TP, Head IM, Velasquez-Orta SB, Velasquez-Orta SB, Scott K (2009) A single chamber packed bed microbial fuel cell biosensor for measuring organic content of wastewater. Water Sci Technol 60(11):2879–2887. CrossRefPubMedGoogle Scholar
  46. 46.
    Jiang D, Li B (2009) Granular activated carbon single-chamber microbial fuel cells (GAC-SCMFCs): a design suitable for large-scale wastewater treatment processes. Biochem Eng J 47(1):31–37. CrossRefGoogle Scholar
  47. 47.
    Feng Y, Lee H, Wang X, Liu Y, He W (2010) Continuous electricity generation by a graphite granule baffled air–cathode microbial fuel cell. Bioresour Technol 101(2):632–638. CrossRefPubMedGoogle Scholar
  48. 48.
    Kong W, Guo Q, Wang X, Yue X (2011) Electricity generation from wastewater using an anaerobic fluidized bed microbial fuel cell. Ind Eng Chem Res 50(21):12225–12232. CrossRefGoogle Scholar
  49. 49.
    Cardenas-Robles A, Martinez E, Rendon-Alcantar I, Frontana C, Gonzalez-Gutierrez L (2013) Development of an activated carbon-packed microbial bioelectrochemical system for azo dye degradation. Bioresour Technol 127:37–43. CrossRefPubMedGoogle Scholar
  50. 50.
    Zhang X, Shi J, Liang P, Wei J, Huang X, Zhang C, Logan BE (2013) Power generation by packed-bed air–cathode microbial fuel cells. Bioresour Technol 142:109–114. CrossRefPubMedGoogle Scholar
  51. 51.
    Huggins T, Wang H, Kearns J, Jenkins P, Ren ZJ (2014) Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresour Technol 157:114–119. CrossRefPubMedGoogle Scholar
  52. 52.
    Gonzalez-Gutierrez L, Frontana C, Martinez E (2015) Upflow fixed bed bioelectrochemical reactor for wastewater treatment applications. Bioresour Technol 176:292–295. CrossRefPubMedGoogle Scholar
  53. 53.
    Liu D, Roca-Puigros M, Geppert F, Caizan-Juanarena L, Na Ayudthaya SP, Buisman C, Ter Heijne A (2018) Granular carbon-based electrodes as cathodes in methane-producing bioelectrochemical systems. Front Bioeng Biotechnol 6:78. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Nicolella C, Van Loosdrecht M, Heijnen J (2000) Wastewater treatment with particulate biofilm reactors. J Biotechnol 80(1):1–33CrossRefGoogle Scholar
  55. 55.
    Gupta CK, Sathiyamoorthy D (1998) Fluid bed technology in materials processing. CRC Press, Boca RatonCrossRefGoogle Scholar
  56. 56.
    Scott K, Yu EH (2015) Microbial electrochemical and fuel cells: fundamentals and applications. Woodhead Publishing, Newcastle University, UKGoogle Scholar
  57. 57.
    Wu H, Zhang J, Ngo HH, Guo W, Hu Z, Liang S, Fan J, Liu H (2015) A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresour Technol 175:594–601CrossRefGoogle Scholar
  58. 58.
    Ramírez-Vargas CA, Prado A, Arias CA, Carvalho PN, Esteve-Núñez A, Brix H (2018) Microbial electrochemical technologies for wastewater treatment: principles and evolution from microbial fuel cells to bioelectrochemical-based constructed wetlands. Water 10(9):1128CrossRefGoogle Scholar
  59. 59.
    Aguirre A (2017) Integrating microbial electrochemical systems in constructed wetlands, a new paradigm for treating wastewater in small communities. Universidad de AlcaláGoogle Scholar
  60. 60.
    Esteve-Núñez A, Fernandez Ontivero J, Salas JJ, Berna A, Reija Maqueda A, Aragon C, Aguirre-Sierra MA, Bacchetti de Gregoris T, Esteve-Núñez R, Barroeta B, Pidre JR (2014) Long-term demonstration of a bioelectrochemically constructed wetland for urban wastewater treatment. In: Conference: 11th IWA leading edge conference on water and wastewater technologies LET 2014’, Abu DabiGoogle Scholar
  61. 61.
    Rabaey I, Ossieur W, Verhaege M, Verstraete W (2005) Continuous microbial fuel cells convert carbohydrates to electricity. Water Sci Technol 52(1–2):515–523CrossRefGoogle Scholar
  62. 62.
    Huggins TM, Pietron JJ, Wang H, Ren ZJ, Biffinger JC (2015) Graphitic biochar as a cathode electrocatalyst support for microbial fuel cells. Bioresour Technol 195:147–153. CrossRefPubMedGoogle Scholar
  63. 63.
    Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192CrossRefGoogle Scholar
  64. 64.
    Krewer U, Song Y, Sundmacher K, John V, Lübke R, Matthies G, Tobiska L (2004) Direct methanol fuel cell (DMFC): analysis of residence time behaviour of anodic flow bed. Chem Eng Sci 59(1):119–130CrossRefGoogle Scholar
  65. 65.
    Kumar S, Ramamurthy T, Subramanian B, Basha A (2008) Studies on the fluidized bed electrode. Int J Chem React Eng. CrossRefGoogle Scholar
  66. 66.
    Kreysa G, Pionteck S, Heitz E (1975) Comparative investigations of packed and fluidized bed electrodes with non-conducting and conducting particles. J Appl Electrochem 5(4):305–312CrossRefGoogle Scholar
  67. 67.
    Rennie AJ, Martins VL, Smith RM, Hall PJ (2016) Influence of particle size distribution on the performance of ionic liquid-based electrochemical double layer capacitors. Sci Rep 6:22062CrossRefGoogle Scholar
  68. 68.
    Crittenden JC, Trussell RR, Hand DW, Howe KJ, Tchobanoglous G (2012) MWH’s water treatment: principles and design. Wiley, New YorkCrossRefGoogle Scholar
  69. 69.
    Fradler KR, Kim JR, Boghani HC, Dinsdale RM, Guwy AJ, Premier GC (2014) The effect of internal capacitance on power quality and energy efficiency in a tubular microbial fuel cell. Process Biochem 49(6):973–980CrossRefGoogle Scholar
  70. 70.
    Aguirre-Sierra A, Reija A, Berná A, Salas JJ, Esteve-Núñez (2014) A Microbial Electrochemical Constructed Wetlands (METlands): design and operation conditions for enhancing the removal of pollutants in real urban wastewater. In: Conference: 2nd European Meeting of the International Society for Microbial Electrochemistry and Technology (EU-ISMET 2014)Google Scholar
  71. 71.
    Austin G, Yu K (2016) Constructed wetlands and sustainable development. Routledge, LondonCrossRefGoogle Scholar
  72. 72.
    Iza J (1991) Fluidized bed reactors for anaerobic wastewater treatment. Water Sci Technol 24(8):109–132CrossRefGoogle Scholar
  73. 73.
    Nedovic V, Willaert R (2013) Fundamentals of cell immobilisation biotechnology, vol 8. Springer, New YorkGoogle Scholar
  74. 74.
    Aelterman P, Freguia S, Keller J, Verstraete W, Rabaey K (2008) The anode potential regulates bacterial activity in microbial fuel cells. Appl Microbiol Biotechnol 78(3):409–418CrossRefGoogle Scholar
  75. 75.
    Carmona-Martinez AA, Harnisch F, Kuhlicke U, Neu TR, Schroder U (2013) Electron transfer and biofilm formation of Shewanella putrefaciens as function of anode potential. Bioelectrochemistry 93:23–29. CrossRefPubMedGoogle Scholar
  76. 76.
    Huang JS, Yang P, Li CM, Guo Y, Lai B, Wang Y, Feng L, Zhang Y (2015) Effect of nitrite and nitrate concentrations on the performance of AFB-MFC enriched with high-strength synthetic wastewater. Biotechnol Res Int. CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Santoro C, Guilizzoni M, Baena JC, Pasaogullari U, Casalegno A, Li B, Babanova S, Artyushkova K, Atanassov P (2014) The effects of carbon electrode surface properties on bacteria attachment and start up time of microbial fuel cells. Carbon 67:128–139CrossRefGoogle Scholar
  78. 78.
    Das DM (2017) Fuel cell: a bioelectrochemical system that converts waste to watts. Springer, New YorkGoogle Scholar
  79. 79.
    Bastian P, Kraus J, Scheichl R, Wheeler M (2013) Simulation of flow in porous media: applications in energy and environment, vol 12. Walter de Gruyter, BerlinCrossRefGoogle Scholar
  80. 80.
    Huh T (1985) Electrical and electrochemical behavior of fluidized bed electrodes. University of California, BerkeleyGoogle Scholar
  81. 81.
    Sabacky B, Evans J (1977) The electrical conductivity of fluidized bed electrodes—its significance and some experimental measurements. Metall Trans B 8(1):5–13CrossRefGoogle Scholar
  82. 82.
    Villasenor J, Capilla P, Rodrigo M, Canizares P, Fernandez F (2013) Operation of a horizontal subsurface flow constructed wetland–microbial fuel cell treating wastewater under different organic loading rates. Water Res 47(17):6731–6738CrossRefGoogle Scholar
  83. 83.
    Larrosa-Guerrero A, Scott K, Head I, Mateo F, Ginesta A, Godinez C (2010) Effect of temperature on the performance of microbial fuel cells. Fuel 89(12):3985–3994CrossRefGoogle Scholar
  84. 84.
    Behera M, Murthy S, Ghangrekar M (2011) Effect of operating temperature on performance of microbial fuel cell. Water Sci Technol 64(4):917–922CrossRefGoogle Scholar
  85. 85.
    Michie IS, Kim JR, Dinsdale RM, Guwy AJ, Premier GC (2014) The influence of anodic helical design on fluid flow and bioelectrochemical performance. Bioresour Technol 165:13–20CrossRefGoogle Scholar
  86. 86.
    Erable B, Etcheverry L, Bergel A (2011) From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES): maximizing chemical oxygen demand (COD) removal from wastewater. Biofouling 27(3):319–326CrossRefGoogle Scholar
  87. 87.
    Xie X, Criddle C, Cui Y (2015) Design and fabrication of bioelectrodes for microbial bioelectrochemical systems. Energy Environ Sci 8(12):3418–3441CrossRefGoogle Scholar
  88. 88.
    Dennis PG, Virdis B, Vanwonterghem I, Hassan A, Hugenholtz P, Tyson GW, Rabaey K (2016) Anode potential influences the structure and function of anodic electrode and electrolyte-associated microbiomes. Sci Rep 6:39114. CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Torres CI, Krajmalnik-Brown R, Parameswaran P, Marcus AK, Wanger G, Gorby YA, Rittmann BE (2009) Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization. Environ Sci Technol 43(24):9519–9524. CrossRefPubMedGoogle Scholar
  90. 90.
    Levar CE, Hoffman CL, Dunshee AJ, Toner BM, Bond DR (2017) Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens. ISME J 11(3):741–752. CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Peng L, You S-J, Wang J-Y (2010) Electrode potential regulates cytochrome accumulation on Shewanella oneidensis cell surface and the consequence to bioelectrocatalytic current generation. Biosens Bioelectron 25(11):2530–2533. CrossRefPubMedGoogle Scholar
  92. 92.
    Yoho RA, Popat SC, Torres CI (2014) Dynamic potential-dependent electron transport pathway shifts in anode biofilms of Geobacter sulfurreducens. ChemSusChem 7(12):3413–3419. CrossRefPubMedGoogle Scholar
  93. 93.
    Levar CE, Chan CH, Mehta-Kolte MG, Bond DR (2014) An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors. MBio 5(6):e02034. CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Koch C, Muller S, Harms H, Harnisch F (2014) Microbiomes in bioenergy production: from analysis to management. Curr Opin Biotechnol 27:65–72. CrossRefPubMedGoogle Scholar
  95. 95.
    Fricke K, Harnisch F, Schröder U (2008) On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells. Energy Environ Sci 1 (1).
  96. 96.
    Rodrigo Quejigo J, Rosa LFM, Harnisch F (2018) Electrochemical characterization of bed electrodes using voltammetry of single granules. Electrochem Commun 90:78–82. CrossRefGoogle Scholar
  97. 97.
    Borsje C, Liu D, Sleutels THJA, Buisman CJN, ter Heijne A (2016) Performance of single carbon granules as perspective for larger scale capacitive bioanodes. J Power Sources 325:690–696. CrossRefGoogle Scholar
  98. 98.
    Lovley DR (2011) Reach out and touch someone: potential impact of DIET (direct interspecies energy transfer) on anaerobic biogeochemistry, bioremediation, and bioenergy. Rev Environ Sci Biotechnol 10(2):101–105CrossRefGoogle Scholar
  99. 99.
    Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881CrossRefGoogle Scholar
  100. 100.
    Rijnaarts HH, Norde W, Bouwer EJ, Lyklema J, Zehnder AJ (1993) Bacterial adhesion under static and dynamic conditions. Appl Environ Microbiol 59(10):3255–3265PubMedPubMedCentralGoogle Scholar
  101. 101.
    Rittman BE (1982) The effect of shear stress on biofilm loss rate. Biotechnol Bioeng 24(2):501–506CrossRefGoogle Scholar
  102. 102.
    Hamilton M (2003) The biofilm laboratory: step-by-step protocols for experimental design, analysis, and data interpretation. CytergyGoogle Scholar
  103. 103.
    Lewandowski Z, Beyenal H (2013) Fundamentals of biofilm research, 2nd edn. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  104. 104.
    Pawley J (2010) Handbook of biological confocal microscopy. Springer, New YorkGoogle Scholar
  105. 105.
    Sun D, Cheng S, Wang A, Li F, Logan BE, Cen K (2015) Temporal-spatial changes in viabilities and electrochemical properties of anode biofilms. Environ Sci Technol 49(8):5227–5235CrossRefGoogle Scholar
  106. 106.
    Kramer J, Soukiazian S, Mahoney S, Hicks-Garner J (2012) Microbial fuel cell biofilm characterization with thermogravimetric analysis on bare and polyethyleneimine surface modified carbon foam anodes. J Power Sources 210:122–128CrossRefGoogle Scholar
  107. 107.
    Eaton A, Franson M (2005) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DCGoogle Scholar
  108. 108.
    Bhatt P, Kumar MS, Mudliar S, Chakrabarti T (2007) Biodegradation of chlorinated compounds—a review. Crit Rev Environ Sci Technol 37(2):165–198CrossRefGoogle Scholar
  109. 109.
    Aulenta F, Tocca L, Verdini R, Reale P, Majone M (2011) Dechlorination of trichloroethene in a continuous-flow bioelectrochemical reactor: effect of cathode potential on rate, selectivity, and electron transfer mechanisms. Environ Sci Technol 45(19):8444–8451CrossRefGoogle Scholar
  110. 110.
    Strycharz SM, Gannon SM, Boles AR, Franks AE, Nevin KP, Lovley DR (2010) Reductive dechlorination of 2-chlorophenol by Anaeromyxobacter dehalogenans with an electrode serving as the electron donor. Environ Microbiol Rep 2(2):289–294CrossRefGoogle Scholar
  111. 111.
    Matsuno Y, Tsutsumi A, Yoshida K (1996) Electrode performance of fixed and fluidized bed electrodes for a molten carbonate fuel cell anode. Int J Hydrog Energy 21(8):663–671CrossRefGoogle Scholar
  112. 112.
    Logan B, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial. Fuel Cell Environ Sci Technol 41(9):3341–3346CrossRefGoogle Scholar
  113. 113.
    Xie X, Ye M, Hu L, Liu N, McDonough JR, Chen W, Alshareef HN, Criddle CS, Cui Y (2012) Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes. Energy Environ Sci 5:5265–5270CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Environmental MicrobiologyHelmholtz Center for Environmental Research GmbH-UFZLeipzigGermany
  2. 2.The Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.University of AlcaláAlcalá de HenaresSpain
  4. 4.IMDEA-WATER Parque Tecnologico de AlcalaMadridSpain

Personalised recommendations