, 5:1 | Cite as

Electrochromism: a fascinating branch of electrochemistry

  • Alexander Kraft
Lecture Text


This lecture on electrochromism and electrochromic devices starts with a short introduction to the field. This is followed by an overview of the different classes of electrochromic materials, in which each class is illustrated by some typical examples. The third part deals with some basic parameters to assess electrochromic compounds and devices. After this, we discuss the different types of electrochromic devices or elements, again always illustrated by some examples. Manufacturing considerations and real-world practical application examples of electrochromics are the topics of the last two parts of this lecture.


Electrochromism Electrochromic devices Smart windows Transition metal oxides Conducting polymers 


  1. 1.
    Rauh RD (1999) Electrochromic windows: an overview. Electrochim Acta 44:3165–3176CrossRefGoogle Scholar
  2. 2.
    Deb SK (1995) Reminiscences on the discovery of electrochromic phenomena in transition metal oxides. Sol Energy Mater Sol Cells 39:191–201CrossRefGoogle Scholar
  3. 3.
    Schoot CJ, Ponjee JJ, van Dam HT, van Doorn RA, Bolwijn PT (1973) New electrochromic memory display. Appl Phys Lett 23:64–65CrossRefGoogle Scholar
  4. 4.
    Kaufman FB, Schroeder AH, Engler EM, Patel VV (1980) Polymer-modified electrodes: a new class of electrochromic materials. Appl Phys Lett 36:422–425CrossRefGoogle Scholar
  5. 5.
    Neff VD (1978) Electrochemical oxidation and reduction of thin films of Prussian Blue. J Electrochem Soc 125:886–887CrossRefGoogle Scholar
  6. 6.
    Lampert CM (1984) Electrochromic materials and devices for energy efficient windows. Sol Energy Mater 11:1–27CrossRefGoogle Scholar
  7. 7.
    Svensson JSEM, Granqvist CG (1984) Electrochromic tungsten oxide films for energy efficient windows. Sol Energy Mater 11:29–34CrossRefGoogle Scholar
  8. 8.
    Casini M (2018) Active dynamic windows for buildings: a review. Renew Energy 119:923–934CrossRefGoogle Scholar
  9. 9.
    Granqvist CG, Arvizu MA, Bayrak Pehlivan I, Qu H-Y, Wen R-T, Niklasson GA (2018) Electrochromic materials and devices for energy efficiency and human comfort in buildings: a critical review. Electrochim Acta 259:1170–1182CrossRefGoogle Scholar
  10. 10.
    Baucke FGK, Bange K, Gambke T (1988) Reflecting electrochromic devices. Displays 9:179–187CrossRefGoogle Scholar
  11. 11.
    Österholm AM, Shen DE, Kerszulis JA, Bulloch RH, Kuepfert M, Dyer AL, Reynolds JR (2015) Four shades of brown: tuning of electrochromic polymer blends toward high-contrast eyewear. ACS Appl Mater Interfaces 7:1413–1421PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Hein A, Kortz C, Oesterschulze E (2018) Electrochromic tunable filters based on nanotubes with viologen incorporation. In: Proc SPIE 10679, optics, photonics, and digital technologies for imaging applications V, 106791UGoogle Scholar
  13. 13.
    Coleman JP, Lynch AT, Madhukar P, Wagenknecht JH (1999) Printed, flexible electrochromic displays using interdigitated electrodes. Sol Energy Mater Sol Cells 56:395–418CrossRefGoogle Scholar
  14. 14.
    Saricayir H, Üce M, Koca A (2010) In situ techniques for monitoring electrochromism. An advanced laboratory experiment. J Chem Educ 87:205–207CrossRefGoogle Scholar
  15. 15.
    Bange K (1999) Colouration of tungsten oxide films: a model for optically active coatings. Sol Energy Mater Sol Cells 58:1–131CrossRefGoogle Scholar
  16. 16.
    Granqvist CG (2000) Electrochromic tungsten oxide films: review of progress 1993–1998. Sol Energy Mater Sol Cells 60:201–262CrossRefGoogle Scholar
  17. 17.
    Gottesfeld S, McIntyre JDE, Beni G, Shay JL (1978) Electrochromism in anodic iridium oxide films. Appl Phys Lett 33:208–210CrossRefGoogle Scholar
  18. 18.
    Gavrilyuk AI, Chudnovskii FA (1977) Electrochromism in V2O5 films (in Russian). Pisma Zh Tekh Fiz 3:174–177Google Scholar
  19. 19.
    Dyer CK, Leach JSL (1978) Reversible optical changes within anodic oxide films on titanium and niobium. J Electrochem Soc 125:23–29CrossRefGoogle Scholar
  20. 20.
    Passerini S, Scrosati B, Gorenstein A (1990) The intercalation of lithium in nickel oxide and its electrochromic properties. J Electrochem Soc 137:3297–3300CrossRefGoogle Scholar
  21. 21.
    Monk PMS, Akhtar SP, Boutevin J, Duffield JR (2001) Toward the tailoring of electrochromic bands of metal-oxide mixtures. Electrochim Acta 46:2091–2096CrossRefGoogle Scholar
  22. 22.
    Runnerstrom EL, Llorde A, Lounisac SD, Milliron DJ (2014) Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals. Chem Commun 50:10555–10572CrossRefGoogle Scholar
  23. 23.
    Barawi M, De Trizio L, Giannuzzi R, Veramonti G, Manna L, Manca M (2017) Dual band electrochromic devices based on Nb-doped TiO2 nanocrystalline electrodes. ACS Nano 11:3576–3584PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Manos P (1969) Electrochromic device. US Patent US3451741Google Scholar
  25. 25.
    Bird CL, Kuhn AT (1981) Electrochemistry of the viologens. Chem Soc Rev 10:49–82CrossRefGoogle Scholar
  26. 26.
    Striepe L, Baumgartner T (2017) Viologens and their application as functional materials. Chem Eur J 23:16924–16940PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Byker HJ (1991) Bipyridinium salt solutions. US Patent US5294376Google Scholar
  28. 28.
    Inzelt G (2012) Conducting polymers—a new era in electrochemistry, 2nd edn. Springer Verlag, BerlinCrossRefGoogle Scholar
  29. 29.
    Genies EM, Bidan G, Diaz AF (1983) Spectroelectrochemical study of polypyrrole films. J Electroanal Chem 149:101–113CrossRefGoogle Scholar
  30. 30.
    Yoshino K, Kaneto K, Inuishi Y (1983) Proposal of electro-optical switching and memory devices utilizing doping and undoping processes of conducting polymers. Jpn J Appl Phys 22:L157–L158CrossRefGoogle Scholar
  31. 31.
    Kobayashi T, Yoneyama H, Tamura T (1984) Polyaniline film-coated electrodes as electrochromic display devices. J Electroanal Chem 161:419–423CrossRefGoogle Scholar
  32. 32.
    Kitani A, Yano J, Sasaki K (1986) ECD materials for the three primary colors developed by polyanilines. J Electroanal Chem 209:227–232CrossRefGoogle Scholar
  33. 33.
    Dinh HN, Ding J, Xia SJ, Birss VI (1998) Multi-technique study of the anodic degradation of polyaniline films. J Electroanal Chem 459:45–56CrossRefGoogle Scholar
  34. 34.
    Heuer HW, Wehrmann R, Kirchmeyer S (2002) Electrochromic window based on conducting Poly(3,4-ethylenedioxythiophene)-Poly(styrene sulfonate). Adv Funct Mater 12:89–94CrossRefGoogle Scholar
  35. 35.
    Lim JY, Ko HC, Lee H (2005) Systematic prediction of maximum electrochromic contrast of an electrochromic material. Synth Met 15:595–598CrossRefGoogle Scholar
  36. 36.
    Thompson BC, Schottland P, Zong K, Reynolds JR (2000) In situ colorimetric analysis of electrochromic polymers and devices. Chem Mater 12:1563–1571CrossRefGoogle Scholar
  37. 37.
    Argun AA, Aubert P-H, Thompson BC, Schwendeman I, Gaupp CL, Hwang J, Pinto NJ, Tanner DB, MacDiarmid AG, Reynolds JR (2004) Multicolored electrochromism in polymers: structures and devices. Chem Mater 16:4401–4412CrossRefGoogle Scholar
  38. 38.
    Bulloch RH, Kerszulis JA, Dyer AL, Reynolds JR (2015) An electrochromic painter’s palette: color mixing via solution co-processing. ACS Appl Mater Interfaces 7:1406–1412PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Lee K-R, Sotzing GA (2013) Color tuning of black for electrochromic polymers using precursor blends. Chem Commun 49:5192–5194CrossRefGoogle Scholar
  40. 40.
    Savagian LR, Österholm AM, Shen DE, Christiansen DT, Kuepfert M, Reynolds JR (2018) Conjugated polymer blends for high contrast black-to-transmissive electrochromism. Adv Opt Mater 6:1800594CrossRefGoogle Scholar
  41. 41.
    Itaya K, Uchida I, Neff VD (1986) Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc Chem Res 19:162–168CrossRefGoogle Scholar
  42. 42.
    Kraft A (2018) What a chemistry student should know about the history of Prussian blue. ChemTexts 4:16CrossRefGoogle Scholar
  43. 43.
    Mortimer RJ, Reynolds JR (2005) In situ colorimetric and composite coloration efficiency measurements for electrochromic Prussian blue. J Mater Chem 15:2226–2233CrossRefGoogle Scholar
  44. 44.
    Garcia-Jareno JJ, Benito D, Navarro-Laboulais J, Vicente F (1998) Electrochemical behavior of electrodeposited Prussian blue films on ITO electrode: an attractive laboratory experience. J Chem Educ 75:881–884CrossRefGoogle Scholar
  45. 45.
    de Tacconi NR, Rajeshwar K, Lezna RO (2003) Metal hexacyanoferrates: electrosynthesis, in situ characterization and applications. Chem Mater 15:3046–3062CrossRefGoogle Scholar
  46. 46.
    Moskalev PN, Kirin IS (1970) Effect of the electrode potential on the absorption spectrum of a rare-earth diphthalocyanine layer (in Russian). Opt i Spektrosk 29:414–415Google Scholar
  47. 47.
    Lin C-L, Lee C-C, Ho K-C (2002) Spectroelectrochemical studies of manganese phthalocyanine thin films for applications in electrochromic devices. J Electroanal Chem 524–525:8–89Google Scholar
  48. 48.
    Yamase T (1998) Photo- and electrochromism of polyoxometalates and related materials. Chem Rev 98:307–325PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Inzelt G, Day RW, Kinstle JF, Chambers JQ (1984) Spectroelectrochemistry of tetracyanoquinodimethane modified electrodes. J Electroanal Chem 161:147–161CrossRefGoogle Scholar
  50. 50.
    Percec S, Tilford SH (2012) Amorphous polymers with pendant chromogenic groups. US Patent US8287767Google Scholar
  51. 51.
    Schott M, Lorrmann H, Szczerba W, Beck M, Kurth DG (2014) State-of-the-art electrochromic materials based on metallo-supramolecular polymers. Sol Energy Mater Sol Cells 126:68–73CrossRefGoogle Scholar
  52. 52.
    Zaromb S (1962) Theory and design principles of the reversible electroplating light modulator. J Electrochem Soc 109:903–912CrossRefGoogle Scholar
  53. 53.
    Howard BM, Ziegler JP (1995) Optical properties of reversible electrodeposition electrochromic materials. Sol Energy Mater Sol Cells 39:309–316CrossRefGoogle Scholar
  54. 54.
    Kim T-Y, Cho SM, Ah CS, Suh K-S, Ryu H, Chu HY (2014) Electrochromic device for the reversible electrodeposition system. J Inf Disp 15:13–17CrossRefGoogle Scholar
  55. 55.
    Ziegler JP, Howard BM (1995) Applications of reversible electrodeposition electrochromic devices. Sol Energy Mater Sol Cells 39:317–331CrossRefGoogle Scholar
  56. 56.
    Ye T, Xiang Y, Ji H, Hu C, Wu G (2016) Electrodeposition-based electrochromic devices with reversible three-state optical transformation by using titanium dioxide nanoparticle modified FTO electrode. RSC Adv 6:30769–30775CrossRefGoogle Scholar
  57. 57.
    Notten PHL (1999) Electrochromic metal hydrides. Curr Opin Solid State Mater Sci 4:5–10CrossRefGoogle Scholar
  58. 58.
    Notten PHL, Kremers M, Griessen R (1996) Optical switching of Y-hydride thin film electrodes. a remarkable electrochromic phenomenon. J Electrochem Soc 143:3348–3353CrossRefGoogle Scholar
  59. 59.
    Yoshimura K (2015) Metal hydrides for smart-window applications. In: Mortimer RJ, Rosseinsky DR, Monk PMS (eds) Electrochromic materials and devices, 1st edn. Wiley-VCH Weinheim, New York, pp 241–248CrossRefGoogle Scholar
  60. 60.
    Manivasagam TG, Kiraz K, Notten PHL (2012) Electrochemical and optical properties of magnesium-alloy hydrides reviewed. Crystals 2:1410–1433CrossRefGoogle Scholar
  61. 61.
    Mortimer RJ, Sialvi MZ, Varley TS (2014) An in situ colorimetric measurement study of electrochromism in the thin-film nickel hydroxide/oxyhydroxide system. J Solid State Electrochem 18:3359–3367CrossRefGoogle Scholar
  62. 62.
    Mortimer RJ, Varley TS (2012) In situ spectroelectrochemistry and colour measurement of a complementary electrochromic device based on surface-confined Prussian blue and aqueous solution-phase methyl viologen. Sol Energy Mater Sol Cells 99:213–220CrossRefGoogle Scholar
  63. 63.
    Mortimer RJ, Monk PMS, Rosseinsky DR (2015) Definitions of electrochromic materials and device performance parameters. In: Mortimer RJ, Rosseinsky DR, Monk PMS (eds) Electrochromic materials and devices, 1st edn. Wiley-VCH Weinheim, New York, pp 623–626CrossRefGoogle Scholar
  64. 64.
    Gaupp CL, Welsh DM, Rauh RD, Reynolds JR (2002) Composite coloration efficiency measurements of electrochromic polymers based on 3,4-Alkylenedioxythiophenes. Chem Mater 14:3964–3970CrossRefGoogle Scholar
  65. 65.
    Roldan R, Romanyuk YE (2014) Dynamics in electrochromic windows interpreted with an extended logistic model. J Electrochem Soc 163:E235–E240CrossRefGoogle Scholar
  66. 66.
    Gunde MK, Krasovec UO, Platzer WJ (2005) Color rendering properties of interior lighting influenced by a switchable window. J Opt Soc Am A22:416–423CrossRefGoogle Scholar
  67. 67.
    Arbab S, Matusiak BS, Martinsen FA, Hauback BC (2017) The impact of advanced glazing on colour perception. J Int Colour Assoc 17:50–68Google Scholar
  68. 68.
    Aste N, Leonforte N, Piccolo A (2018) Color rendering performance of smart glazings for building applications. Sol Energy 176:51–61CrossRefGoogle Scholar
  69. 69.
    Hassab S, Shen DE, Österholm AM, Da Rocha M, Song G, Alesanco Y, Vinuales A, Rougier A, Reynolds JR, Padilla J (2018) A new standard method to calculate electrochromic switching time. Sol Energy Mater Sol Cells 185:54–60CrossRefGoogle Scholar
  70. 70.
    Scholz G, Scholz F (2014) First-order differential equations in chemistry. ChemTexts 1:1CrossRefGoogle Scholar
  71. 71.
    Czanderna AW, Benson DK, Jorgensen GJ, Zhang J-G, Tracy CE, Deb SK (1999) Durability issues and service lifetime prediction of electrochromic windows for buildings applications. Sol Energy Mater Sol Cells 56:419–436CrossRefGoogle Scholar
  72. 72.
    Lampert CM, Agrawal A, Baertlien C, Nagai J (1999) Durability evaluation of electrochromic devices—an industry perspective. Sol Energy Mater Sol Cells 56:449–463CrossRefGoogle Scholar
  73. 73.
    Granqvist CG (1993) Transparent conductive electrodes for electrochromic devices: a review. Appl Phys A 57:19–24CrossRefGoogle Scholar
  74. 74.
    Singh R, Tharion J, Murugan S, Kumar A (2017) ITO-free solution-processed flexible electrochromic devices based on PEDOT:PSS as transparent conducting electrode. ACS Appl Mater Interfaces 9:19427–19435PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    von Benken W, Kuwana T (1970) Preparation and properties of thin gold and platinum films on glass or quartz for transparent electrodes. Anal Chem 42:1114–1116CrossRefGoogle Scholar
  76. 76.
    Yan C, Kang W, Wang J, Cui M, Wang X, Foo CY, Chee KJ, Lee PS (2014) Stretchable and wearable electrochromic devices. ACS Nano 8:316–322PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Hu L, Gruner G, Li D, Kaner RB, Cech J (2007) Patternable transparent carbon nanotube films for electrochromic devices. J Appl Phys 101:016102CrossRefGoogle Scholar
  78. 78.
    Zhao L, Zhao L, Xu Y, Qiu T, Zhi L, Shi G (2009) Polyaniline electrochromic devices with transparent graphene electrodes. Electrochim Acta 55:491–497CrossRefGoogle Scholar
  79. 79.
    Ho K-C, Singleton DE, Greenberg CB (1990) The influence of terminal effect on the performance of electrochromic windows. J Electrochem Soc 137:3858–3864CrossRefGoogle Scholar
  80. 80.
    Krasovec UO, Orel B, Reisfeld R (1998) Electrochromism of CeVO4 and Ce/V-oxide ion-storage films prepared by the sol–gel route. Electrochem Solid State Lett 1:104–106CrossRefGoogle Scholar
  81. 81.
    Kadam A, Sonavane AC, Inamdar A, Deshmukh H, Patil PS (2010) Multicoloured electrochromic thin films of NiO/PANI. J Phys D Appl Phys 43:315102CrossRefGoogle Scholar
  82. 82.
    DeLongchamp DM, Hammond PT (2004) Multiple-color electrochromism from layer-by-layer-assembled polyaniline/Prussian blue nanocomposite thin films. Chem Mater 16:4799–4805CrossRefGoogle Scholar
  83. 83.
    Li H, McRae L, Elezabbi AY (2018) Solution-processed interfacial PEDOT:PSS assembly into porous tungsten molybdenum oxide nanocomposite films for electrochromic applications. ACS Appl Mater Interfaces 10:10520–10527PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Heckner K-H, Kraft A (2002) Similarities between electrochromic windows and thin film batteries. Solid State Ionics 152–153:899–905CrossRefGoogle Scholar
  85. 85.
    Kraft A, Franz S, Rottmann M, Heckner K-H (2004) Process for the electric control of electrochromic elements. European Patent EP1517293Google Scholar
  86. 86.
    Byker HJ (2015) Solution-phase electrochromic devices and systems. In: Mortimer RJ, Rosseinsky DR, Monk PMS (eds) Electrochromic materials and devices, 1st edn. Wiley-VCH Weinheim, New York, pp 401–418Google Scholar
  87. 87.
    Bechinger C, Ferrere S, Zaban A, Spague J, Gregg BA (1997) Photoelectrochromic windows and displays. Nature 383:608–610CrossRefGoogle Scholar
  88. 88.
    Cannavale A, Cossari P, Eperon GE, Colella S, Fiorito F, Gigli G, Snaith HJ, Listorti A (2016) Forthcoming perspectives of photoelectrochromic devices: a critical review. Energy Environ Sci 9:2682–2719CrossRefGoogle Scholar
  89. 89.
    Park S-I, Quan Y-J, Kim S-H, Kim H, Kim S, Chun D-M, Lee CS, Taya M, Chu W-S, Ahn S-H (2016) A review on fabrication processes for electrochromic devices. Int J Pr Eng Man-GT 3:397–421Google Scholar
  90. 90.
    Schmidt DJ, Pridgen EM, Hammond PT, Love JC (2010) Layer-by-layer assembly of a pH-responsive and electrochromic thin film. J Chem Educ 87:208–211CrossRefGoogle Scholar
  91. 91.
    Heusing S, Aegerter M (2018) Sol–gel coating for electrochromic devices. In: Klein L et al (eds) Handbook of sol–gel science and technology, Springer, New York, pp 2745–2784CrossRefGoogle Scholar
  92. 92.
    Kraft A, Rottmann M, Heckner K-H (2006) Large area electrochromic glazing with ion conducting PVB interlayer and two complementary electrodeposited electrochromic layers. Sol Energy Mater Sol Cells 90:469–476CrossRefGoogle Scholar
  93. 93.
    Kraft A, Rottmann M (2009) Properties, performance and current status of the laminated electrochromic glass of Gesimat. Sol Energy Mater Sol Cells 93:2088–2092CrossRefGoogle Scholar
  94. 94.
    Jödicke D, Marquardt R, Batchelor RA (1994) Cast resin mixture for bonding substantially sheet-shaped elements. US Patent US5859723Google Scholar
  95. 95.
    Georen P, Marsal Berenguel R (2008) Electrolytes for electrochromic devices. US Patent US8218225Google Scholar
  96. 96.
    Byker H (1986) Single-compartment, self-erasing, solution-phase electrochromic devices, solution for use therein, and uses thereof. US Patent US4902108Google Scholar
  97. 97.
    Vitkala J (2017) Summary of GPD 2017. GPD_2107_Worldwide_glass_trends.pdf. Accessed 16 Oct 2018
  98. 98.
    Sbar NL, Podbelski L, Yang HM, Pease B (2012) Electrochromic dynamic windows for office buildings. Int J Sust Built Environ 1:125–139CrossRefGoogle Scholar
  99. 99.
    Wittkopf H, Cardinal J, Gumprich V (1999) Pilkington E-control—the new electrochromic glazing for optimization of lighting, heating and air-conditioning. In: Proceedings of the glass processing days, pp 264–266Google Scholar
  100. 100.
    Jödicke D, Wittkopf H (2007) The 2nd generation of an electrochromic solar control glazing—ready for projects. In: Proceedings of the glass performance days, pp 394–395Google Scholar
  101. 101.
    Beaupré S, Breton A-C, Dumas J, Leclerc M (2009) Multicolored electrochromic cells based on Poly(2,7-Carbazole) derivatives for adaptive camouflage. Chem Mater 21:1504–1513CrossRefGoogle Scholar
  102. 102.
    Yu H, Shao S, Yan L, Meng H, He Y, Yao C, Xu P, Zhang X, Hu W, Huang W (2016) Side-chain engineering of green color electrochromic polymer materials: toward adaptive camouflage application. J Mater Chem C 4:2269–2273CrossRefGoogle Scholar
  103. 103.
    Otley MT, Invernale M, Sotzing GA (2015) Fabric electrochromic displays for adaptive camouflage, biomimicry, wearable displays and fashion. In: Mortimer RJ, Rosseinsky DR, Monk PMS (eds) Electrochromic materials and devices, 1st edn. Wiley-VCH Weinheim, New York, pp 503–524CrossRefGoogle Scholar
  104. 104.
    Franke E, Trimble CL, Schubert M, Woollam JA, Hale JS (2000) All-solid-state electrochromic reflectance device for emittance modulation in the far-infrared spectral region. Appl Phys Lett 77:930–932CrossRefGoogle Scholar
  105. 105.
    Demiryont H, Moorehead D (2009) Electrochromic emissivity modulator for spacecraft thermal management. Sol Energy Mater Sol Cells 93:2075–2078CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Kraft ConsultEichwaldeGermany

Personalised recommendations