Advertisement

ChemTexts

, 4:8 | Cite as

Colloidal photoemissive nanoparticles

  • Soranyel González-Carrero
  • Julia Pérez-Prieto
Lecture Text
  • 11 Downloads

Abstract

Nanoparticles possess distinctive properties compared to those of their bulk counterparts. They can be prepared as colloids using molecules which play a key role in their preparation, colloidal stability, functionality, and/or optical features. These molecules can act as solvents, surfactants, reactants and ligands. Photoactive nanoparticles exhibit unique optical features due to the combined effect of their nanometric scale and the derived quantum confinement effect. The degree and type of response to size is related to their composition. They can form either colourless or colourful colloids, emit light either at longer wavelengths than those of the absorbed light (down-conversion luminescence) or at shorter wavelengths (up-conversion luminescence). In addition, the nanostructures can exhibit enhanced properties compared with their bulk counterparts, (for example, superior chemical sensing) due to their intrinsic large surface/volume ratio and their functionality can be further enhanced by ligand exchange or modification. Moreover, the processability of colloidal nanoparticles is crucial to many of their applications, such as for light-emitting devices and in optoelectronics, among other applications.

Keyword

Nanoparticles Luminescence Down-conversion Up-conversion Quantum dots Lead halide perovskites Gold nanoclusters Lanthanide-based nanoparticles 

Notes

Acknowledgements

We thank the Spanish Ministry of Economy and Competitiveness (projects CTQ2014-60174-P (and Grant to SGC), partially co-financed with FEDER funds, and Maria de Maeztu MDM-2015-0538) for funding support.

References

  1. 1.
    Mitzi DB (2004) Solution-processed inorganic semiconductors. J Mater Chem 14(15):2355–2365.  https://doi.org/10.1039/b403482a CrossRefGoogle Scholar
  2. 2.
    Mitzi DB, Feild CA, Harrison WTA, Guloy AM (1994) Conducting tin halides with a layered organic-based perovskite structure. Nature 369(6480):467–469CrossRefGoogle Scholar
  3. 3.
    Mitzi DB, Chondroudis K, Kagan CR (2001) Organic–inorganic electronics. IBM J Res Dev 45(1):29–45.  https://doi.org/10.1147/rd.451.0029 CrossRefGoogle Scholar
  4. 4.
    González-Carrero S, Galian RE, Pérez-Prieto J (2015) Organometal halide perovskites: bulk low-dimension materials and nanoparticles. Part Part Syst Charact 32(7):709–720.  https://doi.org/10.1002/ppsc.201400214 CrossRefGoogle Scholar
  5. 5.
    Billing DG, Lemmerer A (2009) Inorganic–organic hybrid materials incorporating primary cyclic ammonium cations: the lead bromide and chloride series. CrystEngComm 11(8):1549–1562.  https://doi.org/10.1039/b819455f CrossRefGoogle Scholar
  6. 6.
    Smith AM, Nie S (2010) Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res 43(2):190–200.  https://doi.org/10.1021/ar9001069 CrossRefGoogle Scholar
  7. 7.
    Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933CrossRefGoogle Scholar
  8. 8.
    Auzel F (2004) Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chemical reviews 104(1):139–174.  https://doi.org/10.1021/cr020357g CrossRefGoogle Scholar
  9. 9.
    Vanegas JP, Zaballos-Garcia E, Gonzalez-Bejar M, Londono-Larrea P, Perez-Prieto J (2016) Adenosine monophosphate-capped gold(I) nanoclusters: synthesis and lanthanide ion-induced enhancement of their luminescence. RSC Adv 6(21):17678–17682.  https://doi.org/10.1039/c6ra01891b CrossRefGoogle Scholar
  10. 10.
    González-Béjar M, Francés-Soriano L, Pérez-Prieto J (2016) Upconversion nanoparticles for bioimaging and regenerative medicine. Front Bioeng Biotechnol 4:47.  https://doi.org/10.3389/fbioe.2016.00047 CrossRefGoogle Scholar
  11. 11.
    Wang C, Cheng L, Liu Y, Wang X, Ma X, Deng Z, Li Y, Liu Z (2013) Imaging-guided pH-sensitive photodynamic therapy using charge reversible upconversion nanoparticles under near-infrared light. Adv Funct Mater 23(24):3077–3086.  https://doi.org/10.1002/adfm.201202992 CrossRefGoogle Scholar
  12. 12.
    Svenson S, Prud’homme RK (2012) Multifunctional nanoparticles for drug delivery applications: imaging, targeting, and delivery. Springer, New York.  https://doi.org/10.1007/978-1-4614-2305-8 CrossRefGoogle Scholar
  13. 13.
    Das TK, Ilaiyaraja P, Sudakar C (2018) Whispering gallery mode enabled efficiency enhancement: defect and size controlled CdSe quantum dot sensitized whisperonic solar cells. Sci Rep 8(1):9709.  https://doi.org/10.1038/s41598-018-27969-y CrossRefGoogle Scholar
  14. 14.
    Woggon U, Gaponenko SV (1995) Excitons in quantum dots. Phys Status Solidi (b) 189(2):285–343.  https://doi.org/10.1002/pssb.2221890202 CrossRefGoogle Scholar
  15. 15.
    La Rocca GC (2003) Wannier-Mott excitons in semiconductors. In: Thin films and nanostructures, vol 31. Academic Press, pp 97–128.  https://doi.org/10.1016/S1079-4050(03)31002-6
  16. 16.
    Tauc J (1974) Optical properties of amorphous semiconductors. In: Tauc J (eds) Amorphous and liquid semiconductors. Springer, Boston.  https://doi.org/10.1007/978-1-4615- CrossRefGoogle Scholar
  17. 17.
    Ghosh Chaudhuri R, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112(4):2373–2433.  https://doi.org/10.1021/cr100449n CrossRefGoogle Scholar
  18. 18.
    Murcia MJ, Shaw DL, Woodruff H, Naumann CA, Young BA, Long EC (2006) Facile sonochemical synthesis of highly luminescent ZnS–shelled CdSe quantum dots. Chem Mater 18(9):2219–2225.  https://doi.org/10.1021/cm0505547 CrossRefGoogle Scholar
  19. 19.
    Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine–trioctylphosphine oxide–trioctylphospine mixture. Nano Lett 1(4):207–211.  https://doi.org/10.1021/nl0155126 CrossRefGoogle Scholar
  20. 20.
    Hühn J, Carrillo-Carrion C, Soliman MG, Pfeiffer C, Valdeperez D, Masood A, Chakraborty I, Zhu L, Gallego M, Yue Z, Carril M, Feliu N, Escudero A, Alkilany AM, Pelaz B, del Pino P, Parak WJ (2017) Selected standard protocols for the synthesis, phase transfer, and characterization of inorganic colloidal nanoparticles. Chem Mater 29(1):399–461.  https://doi.org/10.1021/acs.chemmater.6b04738 CrossRefGoogle Scholar
  21. 21.
    Tomasulo M, Yildiz I, Kaanumalle SL, Raymo FM (2006) pH-sensitive ligand for luminescent quantum dots. Langmuir 22(24):10284–10290.  https://doi.org/10.1021/la0618014 CrossRefGoogle Scholar
  22. 22.
    Delgado-Pérez T, Bouchet Lydia M, de la Guardia M, Galian Raquel E, Pérez-Prieto J (2013) Sensing chiral drugs by using CdSe/ZnS nanoparticles capped with N-acetyl-l-cysteine methyl ester. Chem Eur J 19(33):11068–11076.  https://doi.org/10.1002/chem.201300875 CrossRefGoogle Scholar
  23. 23.
    Agudelo-Morales CE, Galian RE, Pérez-Prieto J (2012) Pyrene-functionalized nanoparticles: two independent sensors, the excimer and the monomer. Anal Chem 84(18):8083–8087.  https://doi.org/10.1021/ac302276j CrossRefGoogle Scholar
  24. 24.
    Liu Y, Tu D, Zhu H, Chen X (2013) Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem Soc Rev 42(16):6924–6958.  https://doi.org/10.1039/c3cs60060b CrossRefGoogle Scholar
  25. 25.
    Galian RE, de la Guardia M, Pérez-Prieto J (2009) Photochemical size reduction of CdSe and CdSe/ZnS semiconductor nanoparticles assisted by nπ* aromatic ketones. J Am Chem Soc 131(3):892–893.  https://doi.org/10.1021/ja807454u CrossRefGoogle Scholar
  26. 26.
    González-Carrero S, de la Guardia M, Galian Raquel E, Pérez-Prieto J (2014) Pyrene-capped CdSe@ZnS nanoparticles as sensitive flexible oxygen sensors in non-aqueous. Media Chem Open 3(5):199–205.  https://doi.org/10.1002/open.201402021 Google Scholar
  27. 27.
    Xing J, Yan F, Zhao Y, Chen S, Yu H, Zhang Q, Zeng R, Demir HV, Sun X, Huan A, Xiong Q (2016) High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano 10(7):6623–6630.  https://doi.org/10.1021/acsnano.6b01540 CrossRefGoogle Scholar
  28. 28.
    Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051.  https://doi.org/10.1021/ja809598r CrossRefGoogle Scholar
  29. 29.
    Schmidt LC, Pertegás A, González-Carrero S, Malinkiewicz O, Agouram S, Mínguez Espallargas G, Bolink HJ, Galian RE, Pérez-Prieto J (2014) Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J Am Chem Soc 136(3):850–853.  https://doi.org/10.1021/ja4109209 CrossRefGoogle Scholar
  30. 30.
    Gonzalez-Carrero S, Galian RE, Perez-Prieto J (2015) Maximizing the emissive properties of CH3NH3PbBr3 perovskite nanoparticles. J Mater Chem A 3(17):9187–9193.  https://doi.org/10.1039/c4ta05878j CrossRefGoogle Scholar
  31. 31.
    Huang H, Polavarapu L, Sichert JA, Susha AS, Urban AS, Rogach AL (2016) Colloidal lead halide perovskite nanocrystals: synthesis, optical properties and applications. NPG Asia Mater 8:e328.  https://doi.org/10.1038/am.2016.167 CrossRefGoogle Scholar
  32. 32.
    Bai S, Yuan Z, Gao F (2016) Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications. J Mater Chem C 4(18):3898–3904.  https://doi.org/10.1039/c5tc04116c CrossRefGoogle Scholar
  33. 33.
    Huang H, Xue Q, Chen B, Xiong Y, Schneider J, Zhi C, Zhong H, Rogach Andrey L (2017) Top-down fabrication of stable methylammonium lead halide perovskite nanocrystals by employing a mixture of ligands as coordinating solvents. Angew Chem Int Ed 56(32):9571–9576.  https://doi.org/10.1002/anie.201705595 CrossRefGoogle Scholar
  34. 34.
    Huang H, Susha AS, Kershaw SV, Hung TF, Rogach AL (2015) Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature. Adv Sci.  https://doi.org/10.1002/advs.201500194 Google Scholar
  35. 35.
    Zhang F, Zhong H, Chen C, Wu X-g, Hu X, Huang H, Han J, Zou B, Dong Y (2015) Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9(4):4533–4542.  https://doi.org/10.1021/acsnano.5b01154 CrossRefGoogle Scholar
  36. 36.
    Jang DM, Park K, Kim DH, Park J, Shojaei F, Kang HS, Ahn J-P, Lee JW, Song JK (2015) Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning. Nano Lett 15(8):5191–5199.  https://doi.org/10.1021/acs.nanolett.5b01430 CrossRefGoogle Scholar
  37. 37.
    Wong AB, Lai M, Eaton SW, Yu Y, Lin E, Dou L, Fu A, Yang P (2015) Growth and anion exchange conversion of CH3NH3PbX3 nanorod arrays for light-emitting diodes. Nano Lett 15(8):5519–5524.  https://doi.org/10.1021/acs.nanolett.5b02082 CrossRefGoogle Scholar
  38. 38.
    Gonzalez-Carrero S, Francés-Soriano L, González-Béjar M, Agouram S, Galian RE, Pérez-Prieto J (2016) The luminescence of CH3NH3PbBr3 perovskite nanoparticles crests the summit and their photostability under wet conditions is enhanced. Small 12(38):5245–5250.  https://doi.org/10.1002/smll.201600209 CrossRefGoogle Scholar
  39. 39.
    Brandt RE, Poindexter JR, Gorai P, Kurchin RC, Hoye RLZ, Nienhaus L, Wilson MWB, Polizzotti JA, Sereika R, Žaltauskas R, Lee LC, MacManus-Driscoll JL, Bawendi M, Stevanović V, Buonassisi T (2017) Searching for “defect-tolerant” photovoltaic materials: combined theoretical and experimental screening. Chem Mater 29(11):4667–4674.  https://doi.org/10.1021/acs.chemmater.6b05496 CrossRefGoogle Scholar
  40. 40.
    Di X, Hu Z, Jiang J, He M, Zhou L, Xiang W, Liang X (2017) Use of long-term stable CsPbBr3 perovskite quantum dots in phospho-silicate glass for highly efficient white LEDs. Chem Commun 53(80):11068–11071.  https://doi.org/10.1039/c7cc06486a CrossRefGoogle Scholar
  41. 41.
    Sun C, Zhang Y, Ruan C, Yin C, Wang X, Wang Y, Yu William W (2016) Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Adv Mater 28(45):10088–10094.  https://doi.org/10.1002/adma.201603081 CrossRefGoogle Scholar
  42. 42.
    Luo B, Pu YC, Lindley Sarah A, Yang Y, Lu L, Li Y, Li X, Zhang Jin Z (2016) Organolead halide perovskite nanocrystals: branched capping ligands control crystal size and stability. Angew Chem Int Ed 55(31):8864–8868.  https://doi.org/10.1002/anie.201602236 CrossRefGoogle Scholar
  43. 43.
    Polavarapu L, Nickel B, Feldmann J, Urban AS (2017) Advances in quantum-confined perovskite nanocrystals for optoelectronics. Adv Energy Mater 7(16):1700267.  https://doi.org/10.1002/aenm.201700267 CrossRefGoogle Scholar
  44. 44.
    González-Carrero S, Martínez-Sarti L, Sessolo M, Galian RE, Pérez-Prieto J (2018) Highly photoluminescent, dense solid films from organic-capped CH3NH3PbBr3 perovskite colloids. J Mater Chem C 6(25):6771–6777.  https://doi.org/10.1039/c8tc01344f CrossRefGoogle Scholar
  45. 45.
    Jana J, Ganguly M, Pal T (2016) Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC Adv 6(89):86174–86211.  https://doi.org/10.1039/c6ra14173k CrossRefGoogle Scholar
  46. 46.
    Liedberg B, Nylander C, Lunström I (1983) Surface plasmon resonance for gas detection and biosensing. Sens Actuators 4:299–304.  https://doi.org/10.1016/0250-6874(83)85036-7 CrossRefGoogle Scholar
  47. 47.
    Qu X, Li Y, Li L, Wang Y, Liang J, Liang J (2015) Fluorescent gold nanoclusters: synthesis and recent biological application. J Nanomater 2015:23.  https://doi.org/10.1155/2015/784097 Google Scholar
  48. 48.
    Vanegas JP, Zaballos-Garcia E, Perez-Prieto J (2014) A tailor-made nucleoside-based colourimetric probe of formic acid. Chem Commun 50(77):11335–11338.  https://doi.org/10.1039/c4cc04254a CrossRefGoogle Scholar
  49. 49.
    Wen X, Yu P, Toh Y-R, Hsu A-C, Lee Y-C, Tang J (2012) Fluorescence dynamics in BSA-protected Au25 nanoclusters. J Phys Chem C 116(35):19032–19038.  https://doi.org/10.1021/jp305902w CrossRefGoogle Scholar
  50. 50.
    Londoño-Larrea P, Vanegas Julie P, Cuaran-Acosta D, Zaballos-García E, Pérez-Prieto J (2017) Water-soluble naked gold nanoclusters are not luminescent. Chem Eur J 23(34):8137–8141.  https://doi.org/10.1002/chem.201700913 CrossRefGoogle Scholar
  51. 51.
    Olesiak-Banska J, Waszkielewicz M, Matczyszyn K, Samoc M (2016) A closer look at two-photon absorption, absorption saturation and nonlinear refraction in gold nanoclusters. RSC Adv 6(101):98748–98752.  https://doi.org/10.1039/c6ra20610g CrossRefGoogle Scholar
  52. 52.
    Zhang C, Zhou Z, Qian Q, Gao G, Li C, Feng L, Wang Q, Cui D (2013) Glutathione-capped fluorescent gold nanoclusters for dual-modal fluorescence/X-ray computed tomography imaging. J Mater Chem B 1(38):5045–5053.  https://doi.org/10.1039/c3tb20784f CrossRefGoogle Scholar
  53. 53.
    Govindaraju S, Ankireddy SR, Viswanath B, Kim J, Yun K (2017) Fluorescent gold nanoclusters for selective detection of dopamine in cerebrospinal fluid. Sci Rep 7:40298.  https://doi.org/10.1038/srep40298 CrossRefGoogle Scholar
  54. 54.
    Kawasaki H, Kumar S, Li G, Zeng C, Kauffman DR, Yoshimoto J, Iwasaki Y, Jin R (2014) Generation of singlet oxygen by photoexcited Au25(SR)18 clusters. Chem Mater 26(9):2777–2788.  https://doi.org/10.1021/cm500260z CrossRefGoogle Scholar
  55. 55.
    Wang F, Liu X (2008) Upconversion Multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J Am Chem Soc 130(17):5642–5643.  https://doi.org/10.1021/ja800868a CrossRefGoogle Scholar
  56. 56.
    Chen G, Agren H, Ohulchanskyy TY, Prasad PN (2015) Light upconverting core–shell nanostructures: nanophotonic control for emerging applications. Chem Soc Rev 44(6):1680–1713.  https://doi.org/10.1039/c4cs00170b CrossRefGoogle Scholar
  57. 57.
    Gnach A, Lipinski T, Bednarkiewicz A, Rybka J, Capobianco JA (2015) Upconverting nanoparticles: assessing the toxicity. Chem Soc Rev 44(6):1561–1584.  https://doi.org/10.1039/c4cs00177j CrossRefGoogle Scholar
  58. 58.
    DaCosta MV, Doughan S, Han Y, Krull UJ (2014) Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review. Anal Chim Acta 832:1–33.  https://doi.org/10.1016/j.aca.2014.04.030 CrossRefGoogle Scholar
  59. 59.
    Zhanjun G, Liang Y, Gan T, Shoujian L, Zhifang C, Yuliang Z (2013) Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv Mater 25(28):3758–3779.  https://doi.org/10.1002/adma.201301197 doiCrossRefGoogle Scholar
  60. 60.
    Won Jin K, Marcin N, Paras NP (2009) Color-coded multilayer photopatterned microstructures using lanthanide(III) ion co-doped NaYF4 nanoparticles with upconversion luminescence for possible applications in security. Nanotechnology 20(18):185301CrossRefGoogle Scholar
  61. 61.
    Ramasamy P, Manivasakan P, Kim J (2014) Upconversion nanophosphors for solar cell applications. RSC Adv 4(66):34873–34895.  https://doi.org/10.1039/c4ra03919j CrossRefGoogle Scholar
  62. 62.
    Zhang F (2015) Photon upconversion nanomaterials. Springer, BerlinCrossRefGoogle Scholar
  63. 63.
    Xie D, Peng H, Huang S, You F (2013) Core–shell structure in doped inorganic nanoparticles: approaches for optimizing luminescence properties. J Nanomater 2013:10.  https://doi.org/10.1155/2013/891515 Google Scholar
  64. 64.
    Francés-Soriano LG-BM, Pérez-Prieto J (2016) In: Altavilla C (ed) Upconverting nanomaterials: perspectives, synthesis, and applications. CRC Press, Boca RatonGoogle Scholar
  65. 65.
    Sedlmeier A, Gorris HH (2015) Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem Soc Rev 44(6):1526–1560.  https://doi.org/10.1039/c4cs00186a CrossRefGoogle Scholar
  66. 66.
    Boyer J-C, Manseau M-P, Murray JI, van Veggel FCJM (2010) Surface modification of upconverting NaYF4 nanoparticles with PEG—phosphate ligands for NIR (800 nm) biolabeling within the biological window. Langmuir 26(2):1157–1164.  https://doi.org/10.1021/la902260j CrossRefGoogle Scholar
  67. 67.
    Esipova TV, Ye X, Collins JE, Sakadžić S, Mandeville ET, Murray CB, Vinogradov SA (2012) Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources. Proc Natl Acad Sci 109(51):20826CrossRefGoogle Scholar
  68. 68.
    Yi G-S, Chow G-M (2007) Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem Mater 19(3):341–343.  https://doi.org/10.1021/cm062447y CrossRefGoogle Scholar
  69. 69.
    Liras M, González-Béjar M, Peinado E, Francés-Soriano L, Pérez-Prieto J, Quijada-Garrido I, García O (2014) Thin amphiphilic polymer-capped upconversion nanoparticles: enhanced emission and thermoresponsive properties. Chem Mater 26(13):4014–4022.  https://doi.org/10.1021/cm501663n CrossRefGoogle Scholar
  70. 70.
    Bogdan N, Vetrone F, Ozin GA, Capobianco JA (2011) Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett 11(2):835–840.  https://doi.org/10.1021/nl1041929 CrossRefGoogle Scholar
  71. 71.
    Dong A, Ye X, Chen J, Kang Y, Gordon T, Kikkawa JM, Murray CB (2011) A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J Am Chem Soc 133(4):998–1006.  https://doi.org/10.1021/ja108948z CrossRefGoogle Scholar
  72. 72.
    Recalde I, Estebanez N, Frances-Soriano L, Liras M, Gonzalez-Bejar M, Perez-Prieto J (2016) Upconversion nanoparticles with a strong acid-resistant capping. Nanoscale 8(14):7588–7594.  https://doi.org/10.1039/c5nr06653k CrossRefGoogle Scholar
  73. 73.
    Brown SB, Brown EA, Walker I (2004) The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol 5(8):497–508.  https://doi.org/10.1016/S1470-2045(04)01529-3 CrossRefGoogle Scholar
  74. 74.
    Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y (2012) In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med 18:1580.  https://doi.org/10.1038/nm.2933 CrossRefGoogle Scholar
  75. 75.
    Liu X, Que I, Kong X, Zhang Y, Tu L, Chang Y, Wang TT, Chan A, Lowik CWGM, Zhang H (2015) In vivo 808 nm image-guided photodynamic therapy based on an upconversion theranostic nanoplatform. Nanoscale 7(36):14914–14923.  https://doi.org/10.1039/c5nr03690a CrossRefGoogle Scholar
  76. 76.
    Zhou J, Liu Q, Feng W, Sun Y, Li F (2015) Upconversion luminescent materials: advances and applications. Chem Rev 115(1):395–465.  https://doi.org/10.1021/cr400478f CrossRefGoogle Scholar
  77. 77.
    Klán P, Šolomek T, Bochet CG, Blanc A, Givens R, Rubina M, Popik V, Kostikov A, Wirz J (2013) Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. Chem Rev 113(1):119–191.  https://doi.org/10.1021/cr300177k CrossRefGoogle Scholar
  78. 78.
    Wencel D, Abel T, McDonagh C (2014) Optical chemical pH sensors. Anal Chem 86(1):15–29.  https://doi.org/10.1021/ac4035168 CrossRefGoogle Scholar
  79. 79.
    Sun L-N, Peng H, Stich MIJ, Achatz D, Wolfbeis OS (2009) pH sensor based on upconverting luminescent lanthanide nanorods. Chem Commun 33:5000–5002.  https://doi.org/10.1039/b907822c CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Universitat de ValenciaPaternaSpain

Personalised recommendations