Advertisement

Computing the arrows of chemical reactions

  • 303 Accesses

  • 8 Citations

Abstract

The use of curved arrows to describe the movement of electrons in chemical reaction schemes is widespread in several areas of chemistry, especially organic chemistry. The drawing of such arrows is guided by chemical intuition on the nature of nucleophiles and electrophiles. Here we show that it is actually possible to compute arrows from single-determinant computational quantum chemistry calculations. The procedure, which is outlined for the aldol reaction, is based on the computation of localized orbitals and their centroids along the intrinsic reaction coordinate.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Scheme 1
Fig. 1
Fig. 2

References

  1. 1.

    Levy DE (2008) Arrow pushing in organic chemistry: an easy approach to understanding reaction mechanisms. Wiley, Hoboken

  2. 2.

    Brisbois RG (1992) J Chem Educ 69:971

  3. 3.

    Penn JH, Al-Shammari AG (2008) J Chem Educ 85:1291

  4. 4.

    Ruder SM, Straumanis AR (2009) J Chem Educ 86:1392

  5. 5.

    Straumanis AR, Ruder SM (2009) J Chem Educ 86:1389

  6. 6.

    Berg S, Ghosh AJ (2011) Chem Educ 88:1663

  7. 7.

    Berg S, Ghosh AJ (2013) Chem Educ 90:1446

  8. 8.

    Foster JM, Boys SF (1960) Rev Mod Phys 32:300

  9. 9.

    Coulson CA (1942) Trans Faraday Soc 38:433

  10. 10.

    Edmiston C, Ruedenberg K (1965) J Chem Phys 43:S97

  11. 11.

    Magnasco V, Perico A (1967) J Chem Phys 47:971

  12. 12.

    Knizia G, Klein JEMN (2015) Angew Chem Int Ed 54:1

  13. 13.

    Boys SF (1960) Rev Mod Phys 32:296

  14. 14.

    Edmiston C, Ruedenberg K (1963) Rev Mod Phys 35:457

  15. 15.

    Pipek J, Mezey PG (1989) J Chem Phys 90:4916

  16. 16.

    Gallup GA (1988) J Chem Educ 65:671

  17. 17.

    Martin RB (1988) J Chem Educ 65:668

  18. 18.

    Bernett WAJ (1969) Chem Educ, 46:746

  19. 19.

    Hoffman DK, Ruedenberg K, Verkade JG (1977) J Chem Educ 54:590

  20. 20.

    Autschbach J (2012) J Chem Educ 89:1032

  21. 21.

    Marzari N, Mostofi AA, Yates JR, Souza I, Vanderbilt D (2012) Rev Mod Phys 84:1419

  22. 22.

    Abu-Farsakh H, Qteish A (2007) Phys Rev B 75:085201

  23. 23.

    Alber F, Folkers G, Carloni P (1999) J Phys Chem B 103:6121

  24. 24.

    Sit PHL, Zipoli F, Chen J, Car R, Cohen MH, Selloni A (2011) Chem Eur J 17:12136

  25. 25.

    Silvestrelli PL, Marzari N, Vanderbilt D, Parrinello M (1998) Solid State Commun 107:7

  26. 26.

    Moyano A, Pericas MA, Serratosa F, Valenti E (1987) J Org Chem 52:5532

  27. 27.

    Burke LA, Leroy G, Sana M (1975) Theor Chim Acta 40:313

  28. 28.

    Vidossich P, Lledos A (2014) Dalton Trans 43:11145

  29. 29.

    Vidossich P, Ujaque G, Lledos A (2012) Chem Commun 48:1979

  30. 30.

    Salem L (1978) Nouv J Chim 2:559

  31. 31.

    Salem L (1979) Int J Quantum Chem 13:321

  32. 32.

    Ponec R (1997) Int J Quantum Chem 62:171

  33. 33.

    Ponec R (2017) J Phys Org Chem. https://doi.org/10.1002/poc3706

  34. 34.

    Zhang X, Houk KN (2005) J Org Chem 70:9712

  35. 35.

    Csizmar CM, Daniels JP, Davis LE, Hoovis TP, Hammond KA, McDougal OM, Warner DL (2013) J Chem Educ 90:1235

  36. 36.

    Montgomery CD (2013) J Chem Educ 90:1396

  37. 37.

    Shaik S (2007) New J Chem 31:2015

  38. 38.

    Mulliken RS (1955) J Chem Phys 23:1833

  39. 39.

    Lowdin PO (1955) Phys Rev 97:1474

  40. 40.

    Bader RFW (1985) Acc Chem Res 18:9

  41. 41.

    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

Download references

Acknowledgements

Financial support from Spanish Ministerio de Economía y Competitividad (project CTQ2014-54071-P) is acknowledged.

Author information

Correspondence to Pietro Vidossich.

Additional information

The topic treated here is appropriate for undergraduate students with a background in computational quantum chemistry and organic chemistry.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 150 KB)

Description of the procedure for computing and visualizing localized orbitals and the associated centroids. Input files for Gaussian09. A movie showing centroids displacements along the reaction path. (MPG 331 KB)

Description of the procedure for computing and visualizing localized orbitals and the associated centroids. Input files for Gaussian09. A movie showing centroids displacements along the reaction path. (MPG 331 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vidossich, P., Lledós, A. Computing the arrows of chemical reactions. ChemTexts 3, 17 (2017) doi:10.1007/s40828-017-0054-8

Download citation

Keywords

  • Computational chemistry
  • Reaction mechanisms
  • MO theory