Advertisement

ChemTexts

, 3:11 | Cite as

Introduction to the dynamic self-organization of chemical systems

Part II: Dynamic instabilities in selected chemical systems
  • Marek OrlikEmail author
Lecture Text

Abstract

Following the presentation of basic concepts of nonlinear dynamics in chemistry in Part I, such dynamic instabilities like the oscillations, multistability, and spatiotemporal pattern formation are described in the present Part II for several real chemical systems, together with relevant kinetic models. Homogeneous systems include one of the Orbán oscillators, involving catalytic oxidation of thiocyanates with hydrogen peroxide and the classical Belousov–Zhabotinsky reaction, together with its well-established Oregonator kinetic model. A heterogeneous electrochemical system involving the electroreduction of nickel thiocyanate complexes reveals bistability and oscillations interrelated as in the Boissonade–De Kepper model. Spatiotemporal patterns emerging due to the coupling between the chemical reaction and diffusion are shown based on: (1) the Belousov–Zhabotinsky reaction including its excitable characteristics, (2) the Brusselator as a source of the model Turing patterns also reported experimentally, and (3) periodic precipitation known as the Liesegang phenomena. Furthermore, the recently reported patterns formed in the systems subject to inhomogeneous temperature distribution were described. The self-organized nature of convection was shown based on both the classical Bénard experiment and the convection driven electrochemically, including the “beating mercury heart” and the electrohydrodynamic formation of luminescent patterns. The course is completed with the brief description of the concept of deterministic chaos and the principle of its control as the modern subject of nonlinear dynamics. The appendix includes laboratory prescriptions for the most attractive experiments.

Keywords

Nonlinear dynamics Self-organization Oscillatory reactions Multistability Pattern formation 

Supplementary material

Supplementary material 1 (MP4 10757 kb)

Supplementary material 2 (AVI 8802 kb)

References

  1. 1.
    Flätgen G, Wasle S, Lübke M, Eickes C, Radhakrishnan G, Doblhofer K, Ertl G (1999) Autocatalytic mechanism of H2O2 reduction on Ag electrodes in acidic electrolyte: experiments and simulations. Electrochim Acta 44:4499–4506CrossRefGoogle Scholar
  2. 2.
    Van Venrooij TGJ, Koper MTM (1995) Bursting and mixed-mode oscillations during the hydrogen peroxide reduction on a platinum electrode. Electrochim Acta 40:1689–1696CrossRefGoogle Scholar
  3. 3.
    Mukouyama Y, Nishimura T, Nakanishi S, Nakato Y (2000) Roles of local deviations and fluctuations of the Helmholtz-layer potential in transitions from stationary to oscillatory current in an H2O2-acid-Pt” electrochemical system. J Phys Chem B 104:11186–11194CrossRefGoogle Scholar
  4. 4.
    Nakanishi S, Mukouyama Y, Karasumi K, Imanishi A, Furuya N, Nakato Y (2000) Appearance of an oscillation through the autocatalytic mechanism by control of the atomic-level structure of electrode surfaces in electrochemical H2O2 reduction at Pt electrodes. J Phys Chem B 104:4181–4188CrossRefGoogle Scholar
  5. 5.
    Bray WC (1921) A periodic reaction in homogeneous solution and its relation to catalysis. J Am Chem Soc 43:1262–1267CrossRefGoogle Scholar
  6. 6.
    Bray WC, Liebhafsky HA (1931) Reactions involving hydrogen peroxide, iodine, and iodate ion. I. Introduction. J Phys Chem 53:38–48Google Scholar
  7. 7.
    Orbán M, Kurin-Csörgei K, Rábai G, Epstein IR (2000) Mechanistic studies of oscillatory copper(II) catalyzed oxidation reactions of sulfur compounds. Chem Eng Sci 55:267–273CrossRefGoogle Scholar
  8. 8.
    Orbán M (1986) Oscillations and bistability in the Cu(II)-catalyzed reaction between H2O2 and KSCN. J Am Chem Soc 108:6893–6898CrossRefGoogle Scholar
  9. 9.
    Hu Y, Song Y, Horváth AK, Cui Y, Ji C, Zhao Y, Gao Q (2014) Combined capillary electrophoresis and high performance liquid chromatography studies on the kinetics and mechanism of the hydrogen peroxide-thiocyanate reaction in a weakly alkaline medium. Talanta 120:10–16CrossRefGoogle Scholar
  10. 10.
    Orbán M, Epstein IR (1987) Chemical oscillators in group VIA: the Cu(II)-catalyzed reaction between hydrogen peroxide and thiosulfate ion. J Am Chem Soc 109:101–106CrossRefGoogle Scholar
  11. 11.
    Pešek O, Schreiberová L, Schreiber I (2011) Dynamical regimes of a pH-oscillator operated in two mass-coupled flow through reactors. Phys Chem Chem Phys 13:9849–9856CrossRefGoogle Scholar
  12. 12.
    Yuan L, Gao Q, Zhao Y, Tang X, Epstein IR (2010) Temperature-induced bifurcations in the Cu(II)-catalyzed and catalyst-free hydrogen peroxide-thiosulfate oscillating reaction. J Phys Chem A 114:7014–7020CrossRefGoogle Scholar
  13. 13.
    Szalai I, Horváth J, Takács N, De Kepper P (2011) Sustained self-organizing pH patterns in hydrogen peroxide driven aqueous redox systems. Phys Chem Chem Phys 13:20228–20234CrossRefGoogle Scholar
  14. 14.
    Luo Y, Orbán M, Kustin K, Epstein IR (1989) Mechanistic study of oscillations and bistability in the Cu(II)-catalyzed reaction between H2O2 and KSCN. J Am Chem Soc 111:4541–4548CrossRefGoogle Scholar
  15. 15.
    Wiśniewski A, Pekala K, Orlik M (2010) Kinetic model of the H2O2–SCN–OH–Cu2+ oscillator and its application to the interpretation of the potentiometric responses of various inert electrodes monitoring the reaction course. J Phys Chem A 114:183–190. doi: 10.1021/jp907558n CrossRefGoogle Scholar
  16. 16.
    Wiśniewski A, Jędrusiak M, Mojzych I, Orlik M (2015) Model calculations and experimental studies as a route toward simplification of the kinetic mechanism of the H2O2–NaSCN–NaOH–CuSO4 homogeneous oscillator. Int J Chem Kin 47:671–683CrossRefGoogle Scholar
  17. 17.
    Jędrusiak M, Wiśniewski A, Orlik M (2015) The model of “minimal oscillator” derived from the kinetic mechanism of the H2O2–NaSCN–NaOH–CuSO4 dynamical system. Int J Chem Kinet 47:791–802CrossRefGoogle Scholar
  18. 18.
    Epstein IR, Pojman J (1996) An introduction to nonlinear chemical dynamics. Oscillations, waves, patterns, and chaos. Oxford University Press, OxfordGoogle Scholar
  19. 19.
    Luo Y, Epstein IR (1990) Feedback analysis of mechanisms for chemical oscillators. Adv Chem Phys 79:269–299Google Scholar
  20. 20.
    Pekala K, Jurczakowski R, Orlik M (2010) On the interpretation of the potentiometric response of the inert solid electrodes in the monitoring of the oscillatory processes involving hydrogen peroxide. J Solid State Electrochem 14:27–34CrossRefGoogle Scholar
  21. 21.
    Bard AJ, Faulkner LR (2001) Electrochemical methods. Fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  22. 22.
    Kortüm G (1966) Lehrbuch der Elektrochemie. Vlg. Chemie, WeinheimGoogle Scholar
  23. 23.
    Rábai G (2011) pH-oscillations in a closed chemical system of CaSO3–H2O2–HCO3 . PCCP 13:13604–13606CrossRefGoogle Scholar
  24. 24.
    Belousov BP (1959) Periodicheski deistvuyushchaya reaktsia i ee mekhanism [Periodically acting reaction and its mechanism]. In: Sbornik referatov po radiotsionnoi meditsine, 1958 [Collection of abstracts on radiation medicine, 1958]. Medgiz, Moscow, pp 145–147Google Scholar
  25. 25.
    Pechenkin A (2009) B P Belousov and his reaction. J Biosci 34:365–371CrossRefGoogle Scholar
  26. 26.
    Pechenkin A (2009) On the origin of the Belousov–Zhabotinsky reaction. Biol Theory 4:196–206CrossRefGoogle Scholar
  27. 27.
    Jayalakshmi V, Ramaswamy R (1997) Influence of working electrodes in Belousov–Zhabotinsky oscillatory system. Can J Chem 75:547–558CrossRefGoogle Scholar
  28. 28.
    Bellér G, Lente G, Fábián I (2010) Central role of phenanthroline mono-N-oxide in the decomposition reactions of tris(1,10-phenanthroline)iron(II) and -iron(III) complexes. Inorg Chem 49:3968–3970CrossRefGoogle Scholar
  29. 29.
    Heidt LJ, McMillan AF (1953) Conversion of sunlight into chemical energy available in storage for man’s use. Science 117:75–76CrossRefGoogle Scholar
  30. 30.
    Gáspár V, Bazsa G, Beck MT (1983) The influence of visible light on the Belousov–Zhabotinskii oscillating reactions applying different catalysts. Z Phys Chem (Leipizig) 264:43–48Google Scholar
  31. 31.
    Toth R, Taylor AF (2006) The tris(2,2-bipirydyl)ruthenium-catalysed Belousov–Zhabotinsky reaction. Prog React Kin Mech 31:59–115CrossRefGoogle Scholar
  32. 32.
    Szymański J, Górecki J (2010) Chemical pulses propagating inside a narrowing channel and their possible computational applications. IJUC 6:461–471Google Scholar
  33. 33.
    Takeoka Y, Watanabe M, Yoshida R (2003) Self-sustaining peristaltic motion on the surface of a porous gel. J Am Chem Soc 125:13320–13321CrossRefGoogle Scholar
  34. 34.
    Gurel O, Gurel D (1984) Types of oscillations in chemical reactions. Recent developments in chemical oscillations. Akademie-Vlg, BerlinGoogle Scholar
  35. 35.
    Kurin-Csörgei K, Zhabotinsky AM, Orbán M, Epstein IR (1996) Bromate-1,4-cyclohexanodione-ferroin gas-free oscillating reaction. 1. Basic features and crossing wave patterns in a reaction-diffusion system without gel. J Phys Chem 100:5393–5397CrossRefGoogle Scholar
  36. 36.
    Yamaguchi T, Kuhnert L, Nagy-Ungvarai Z, Müller SC, Hess B (1991) Gel systems for the Belousov–Zhabotinskii reaction. J Phys Chem 95:5831–5837CrossRefGoogle Scholar
  37. 37.
    Zhabotinsky AM (1974) Concentration autooscillations. Nauka, Moscow (in Russian) Google Scholar
  38. 38.
    Field RJ, Noyes RM (1974) Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. J Chem Phys 60:1877–1884CrossRefGoogle Scholar
  39. 39.
    Boissonade J, De Kepper P (1985) From bistability to sustained oscillations in homogeneous chemical systems in flow reactor mode. In: Field RJ, Burger M (eds) Oscillations and traveling waves in chemical systems. Wiley, New York, pp 223–256Google Scholar
  40. 40.
    Scott SK (1994) Oscillations, waves, and chaos in chemical kinetics. Oxford University Press, New YorkGoogle Scholar
  41. 41.
    Field RJ, Schneider FW (1989) Oscillating chemical reactions and nonlinear dynamics. J Chem Educ 66:195–204CrossRefGoogle Scholar
  42. 42.
    De Kepper P, Boissonade J (1981) Theoretical and experimental analysis of phase diagrams and related dynamical properties in the Belousov–Zhabotinskii system. J Chem Phys 75:189–195CrossRefGoogle Scholar
  43. 43.
    Tyson JJ (1979) Oscillations, bistability and echo waves in models of the Belousov–Zhabotinskii reaction. Ann NY Acad Sci 316:279–295CrossRefGoogle Scholar
  44. 44.
    Tyson JJ (1985) A quantitative account of oscillations, bistability, and travelling waves in the Belousov–Zhabotinsky reaction. In: Field RJ, Burger M (eds) Oscillations and traveling waves in chemical systems. Wiley, New York, pp 93–144Google Scholar
  45. 45.
    Orlik M, Jurczakowski R (2002) On the stability of nonequilibrium steady-states for the electrode processes at a streaming mercury electrode. J Phys Chem B 106:7527–7536CrossRefGoogle Scholar
  46. 46.
    Hankins MJ, Nagy T, Kiss IZ (2013) Methodology for a nullcline-based model from direct experiments: application to electrochemical reaction models. Comput Math Appl 65:1633–1644CrossRefGoogle Scholar
  47. 47.
    Babloyantz A (1986) Molecules, dynamics and life: an introduction to self-organization of matter. Wiley, New YorkGoogle Scholar
  48. 48.
    Orlik M (2012) Self-organization in electrochemical systems. II. Spatiotemporal patterns and control of chaos. In: Scholz F (ed) Monographs in electrochemistry. Springer, BerlinGoogle Scholar
  49. 49.
    Schneider FW, Münster AF (1996) Nichtlineare Dynamik in der Chemie. Spektrum, HeidelbergGoogle Scholar
  50. 50.
    Kristev I, Nikolova M, Nakada I (1989) Spiral structures in electrodeposited silver-antimony alloys. Electrochim Acta 34:1219–1223CrossRefGoogle Scholar
  51. 51.
    Showalter K (1981) Trigger waves in the acidic bromate oxidation of ferroin. J Phys Chem 85:440–447CrossRefGoogle Scholar
  52. 52.
    Pękala K, Wiśniewski A, Jurczakowski R, Wiśniewski T, Wojdyga M, Orlik M (2010) Monitoring of spatiotemporal patterns in the oscillatory chemical reactions with the infrared camera: experiments and model interpretation. J Phys Chem A 114:7903–7911CrossRefGoogle Scholar
  53. 53.
    Taylor AF, Tinsley MR, Showalter K (2013) Quorum sensing and synchronization in populations of coupled chemical oscillators. In: Mikhailov AS, Ertl G (eds) Engineering of chemical complexity. World Scientific Lecture Notes in Complex Systems, vol 11. World Scientific, Singapore, pp 261–278Google Scholar
  54. 54.
    Epstein IR, Vanad VK (2015) Dissipative BZ patterns in systems of coupled nano- and microdroplets. In: Mikhailov AS, Ertl G (eds) Engineering of chemical complexity II. World Scientific Lecture Notes in Complex Systems, vol 12. World Scientific, Singapore, pp 169–184Google Scholar
  55. 55.
    Szymański J, Górecka JN, Igarashi Y, Giżyński K, Górecki J, Zauner KP (2011) Droplets with information processing ability. IJUC 7:185–200Google Scholar
  56. 56.
    Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B 237:37–72CrossRefGoogle Scholar
  57. 57.
    Britton NF (2003) Essential mathematical biology. Springer, LondonCrossRefGoogle Scholar
  58. 58.
    Krischer K (2001) Spontaneous formation of spatiotemporal patterns at the electrode/electrolyte interface. J Electroanal Chem 501:1–21CrossRefGoogle Scholar
  59. 59.
    De Kepper P, Castests V, Dulos E, Boissonade J (1991) Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction. Physica D 49:161–169CrossRefGoogle Scholar
  60. 60.
    Ouyang Q, Swinney HL (1991) Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352:610–612CrossRefGoogle Scholar
  61. 61.
    Lengyel I, Kádár S, Epstein IR (1991) Quasi-two-dimensional Turing patterns in an imposed gradient. Phys Rev Lett 69:2729–2732CrossRefGoogle Scholar
  62. 62.
    Li YI, Oslonovitch J, Mazouz N, Plenge F, Krischer K, Ertl G (2001) Turing-type patterns on electrode surfaces. Science 291:2395–2398CrossRefGoogle Scholar
  63. 63.
    Bonnefont A, Varela H, Krischer K (2003) Stationary small and large amplitude patterns during bulk CO electrooxidation on Pt. Chem Phys Chem 4:1260–1263CrossRefGoogle Scholar
  64. 64.
    Bonnefont A, Varela H, Krischer K (2005) Stationary spatial patterns during bulk CO electrooxidation on Pt. J Phys Chem B 109:3408–3415CrossRefGoogle Scholar
  65. 65.
    Runge FF, Liesegang RE, Belousov BP, Zhabotinsky AM (1987) Selbstorganisation Chemischer Strukturen, Akad. Verlagsges, LeipzigGoogle Scholar
  66. 66.
    Harsch G, Bussemas HH (1985) Bilder, die sich selber malen. Der Chemiker Runge und seine ≫ Musterbilder für Freunde des Schönen ≪ . Anregungen zu einem Spiel mit Farben. DuMont Buchvlg. KölnGoogle Scholar
  67. 67.
    Schibechi RA, Carlsen C (1988) An interesting student chemistry project: investigating Liesegang rings. J Chem Educ 65:365–366CrossRefGoogle Scholar
  68. 68.
    Sharbaugh AH III, Sharbaugh AH Jr (1989) An experimental study of the Liesegang phenomenon and crystal growth in silica gels. J Chem Educ 66:589–594CrossRefGoogle Scholar
  69. 69.
    Stern H (1954) The Liesegang phenomenon. Chem Revs 54:79–99CrossRefGoogle Scholar
  70. 70.
    Griffiths JF (1985) Thermokinetic oscillations in homogeneous gas-phase oxidations. In: Field RJ, Burger M (eds) Oscillations and traveling waves in chemical systems. Wiley, New York, pp 529–564Google Scholar
  71. 71.
    Salnikov IY (1949) Contribution to the theory of periodic homogeneous chemical reactions, part 2. Zh Fiz Khim 23:258–272Google Scholar
  72. 72.
    Gray P (1980) Thermokinetic oscillations in gaseous systems. Ber Bunsen Ges Phys Chem 84:309–315CrossRefGoogle Scholar
  73. 73.
    Gray P, Scott SK (1990) Chemical oscillations and instabilities. Non-linear chemical kinetics. Clarendon Press, OxfordGoogle Scholar
  74. 74.
    Wiśniewski A, Gorzkowski MT, Pekala K, Orlik M (2013) Thermokinetic origin of luminescent traveling fronts in the H2O2–NaOH–SCN–Cu2+ homogeneous oscillator: experiments and model. J Phys Chem A 117:11155–11166CrossRefGoogle Scholar
  75. 75.
    Isaacs NS (1969) Experiments in physical organic chemistry. Macmillan, New York, p 245Google Scholar
  76. 76.
    Pękala K, Jurczakowski R, Lewera A, Orlik M (2007) Luminescent chemical waves in the Cu(II)-catalyzed oscillatory oxidation of SCN ions with hydrogen peroxide. J Phys Chem A 111:3439–3442CrossRefGoogle Scholar
  77. 77.
    Póta G, Bazsa G, Beck MT (1982) Study of pseudo-waves in periodic reactions. Acta Chim Acad Sci Hung 110:277–281Google Scholar
  78. 78.
    Jędrusiak M, Orlik M (2016) The formation and spatiotemporal progress of the pH wave induced by the temperature gradient in the thin-layer H2O2–Na2S2O3–H2SO4–CuSO4 dynamical system. J Phys Chem B 120:3169–3177CrossRefGoogle Scholar
  79. 79.
    Bénard H (1901) Les tourbillons cellulaires ans une nappe liquid transportant de la chaleur par convection en regime permanent. Ann Chem Phys 23:62–144Google Scholar
  80. 80.
    Koschmieder EL (1993) Bénard cells and Taylor vortices. Cambridge University Press, CambridgeGoogle Scholar
  81. 81.
    Bergé P, Pomeau Y, Vidal C (1984) Order within chaos. Towards a deterministic approach to turbulence. Wiley, New YorkGoogle Scholar
  82. 82.
    Baranowski B, Kawczyński AL (1970) Hydrodynamic stability in liquid electrochemical systems with concentration polarization. Rocz Chem (Ann Soc Chim Polonorum) 44:2447–2459Google Scholar
  83. 83.
    Sternling CV, Scriven LE (1959) Interfacial turbulence: hydrodynamic instability and the Marangoni effect. AIChE J 5:514–523CrossRefGoogle Scholar
  84. 84.
    Bowers PG, Soltzberg LJ (1989) Chemical generation and visualization of hydrodynamic instability: an extremely simple demonstration of self-organization. J Chem Educ 66:210–211CrossRefGoogle Scholar
  85. 85.
    Aogaki R, Kitazawa K, Fueki K, Mukaibo T (1978) Theory of polarographic maximum current—I. Conditions for the onset of hydrodynamic instability in a liquid metal electrode system. Electrochim Acta 23:867–874CrossRefGoogle Scholar
  86. 86.
    Aogaki R, Kitazawa K, Fueki K, Mukaibo T (1978) Theory of polarographic maximum current—II. Growth or decay rate of the electrochemical and hydrodynamic instability. Electrochim Acta 23:875–880CrossRefGoogle Scholar
  87. 87.
    Mominul Islam Md, Okajima T, Ohsaka T (2004) Current oscillatory phenomena based on redox reactions at a hanging mercury drop electrode (HMDE)m in dimethyl sulfoxide. J Phys Chem B 108:19425–19431CrossRefGoogle Scholar
  88. 88.
    Mominul Islam Md, Okajima T, Ohsaka T (2006) Eccentric phenomena at liquid mercury electrode/solution interface: upward, downward, and circular motions. J Phys Chem B 110:8619–8625CrossRefGoogle Scholar
  89. 89.
    Gorzkowski MT, Jurczakowski R, Orlik M (2008) Electrochemical oscillations and bistability in the redox processes of mercury ions, coupled with the self-induced convection of Hg surface. J Electroanal Chem 615:135–144CrossRefGoogle Scholar
  90. 90.
    Orlik M, Gorzkowski MT (2008) The simple model and linear stability analysis of the electrode process with the NDR region caused by the potential-dependent convective transport. J Electroanal Chem 617:64–70CrossRefGoogle Scholar
  91. 91.
    Teschke O, Kleinke MU, Galembeck F, Tenan MA (1990) Pattern formation on iron electrodes in sulfuric acid solutions. Langmuir 6:829–833CrossRefGoogle Scholar
  92. 92.
    Kleinke MU, Teschke O, Tenan MA (1991) Pattern formation on aluminum electrodes. J Electrochem Soc 138:2763–2770CrossRefGoogle Scholar
  93. 93.
    Avnir D (1989) Chemically induced pulsations of interfaces: the mercury beating heart. J Chem Educ 66:211–212CrossRefGoogle Scholar
  94. 94.
    Köstlin H, Schaper H (1980) Electrochemiluminescence by dc of rubrene displaying highly organized electrohydrodynamic convection. Phys Lett 76A:455–458CrossRefGoogle Scholar
  95. 95.
    Schaper H, Köstlin H, Schnedler E (1982) New aspects of D-C electrochemiluminescence. J Electrochem Soc 129:1289–1294CrossRefGoogle Scholar
  96. 96.
    Schaper H, Schnedler E (1982) Electrolyte-free electrochemiluminescence in thin-layer cells. Current efficiency studies. J Phys Chem 86:4380–4385CrossRefGoogle Scholar
  97. 97.
    Faulkner L, Bard AJ (1977) Techniques of electrogenerated chemiluminescence. In: Bard AJ (ed) Electroanalytical chemistry, vol 10. Dekker, New York, p 1Google Scholar
  98. 98.
    Orlik M, Rosenmund J, Doblhofer K, Ertl G (1998) Electrochemical formation of luminescent convective patterns in thin-layer cells. J Phys Chem B 102:1397–1403CrossRefGoogle Scholar
  99. 99.
    Orlik M, Doblhofer K, Ertl G (1998) On the mechanism of electrohydrodynamic convection in thin-layer electrolytic cells. J Phys Chem B 102:6367–6374CrossRefGoogle Scholar
  100. 100.
    Orlik M (1999) On the onset of the self-organizing electrohydrodynamic convection in thin-layer electrolytic cells. J Phys Chem B 103:6629–6642CrossRefGoogle Scholar
  101. 101.
    Orlik M (1999) On the geometrical shape of self-organizing electrohydrodynamic convective flows generated in thin–layer electrolytic cells. Phys Chem Chem Phys 1:5359–5367CrossRefGoogle Scholar
  102. 102.
    Orlik M (2000) On the self-organization of the convective motion of fluid, driven by electric forces in the thin-layer electrolytic cells. Electrochem Commun 2:522–526CrossRefGoogle Scholar
  103. 103.
    Read PL, Bel MJ, Johnson DW, Small RM (1992) Quasi-periodic and chaotic flow regimes in a thermally driven, rotating fluid annulus. J Fluid Mech 238:599–632CrossRefGoogle Scholar
  104. 104.
    Stephenson R (2013) A simple model for the origin of quasiperiodic ultradian rhytms in sleep-wake state in the rat. Commun Integr Biol 6:e22433-1–e22433-3CrossRefGoogle Scholar
  105. 105.
    Argoul F, Arneodo A, Richetti P, Roux JC (1987) From quasiperiodicity to chaos in the Belousov–Zhabotinskii reaction. I. Experiment. J Chem Phys 86:3325–3338CrossRefGoogle Scholar
  106. 106.
    Richetti P, Roux JC, Argoul F, Arneodo A (1987) From quasiperiodicity to chaos in the Belousov–Zhabotinskii reaction. II. Modeling and theory. J Chem Phys 86:3339–3356CrossRefGoogle Scholar
  107. 107.
    Lev O, Wolffberg A, Scheintuch M, Pismen LM (1988) Bifurcations to periodic and chaotic motions in anodic nickel dissolution. Chem Eng Sci 43:1339–1353CrossRefGoogle Scholar
  108. 108.
    Strogatz SH (2015) Nonlinear dynamics and chaos—with applications to physics, biology, chemistry, and engineering, 2nd edn. Westview Press, Perseus Books, BoulderGoogle Scholar
  109. 109.
    Bushev M (1994) Synergetics: chaos, order, self-organization. World Scientific, SingaporeCrossRefGoogle Scholar
  110. 110.
    Kantz H, Schreiber T (2004) Nonlinear time series analysis, 2nd edn. Cambridge University Press, New YorkGoogle Scholar
  111. 111.
    Fuchs A (2013) Nonlinear dynamics in complex systems. theory and applications for the life-, neuro- and natural sciences. Springer, BerlinGoogle Scholar
  112. 112.
    Lorenz EN (1993) The essence of chaos. University of Washington Press, SeattleCrossRefGoogle Scholar
  113. 113.
    Schuster HG, Just W (2005) Deterministic chaos. An introduction, 4th edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  114. 114.
    Kawczyński AL (1990) Chemical reactions—from equilibrium through dissipative structures to chaos. WNT, Warsaw (in Polish) Google Scholar
  115. 115.
    Orlik M (1995) Chemical deterministic chaos. Polish J Chem 69:1349–1386Google Scholar
  116. 116.
    Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141CrossRefGoogle Scholar
  117. 117.
    Gleick J (1987) Chaos. Making a new science. Abacus, LondonGoogle Scholar
  118. 118.
    Swinney HL (1983) Observation of order and chaos in nonlinear systems. Physica 7D:3–155Google Scholar
  119. 119.
    Orbán M, Epstein IR (1982) Complex periodic and aperiodic oscillation in the chlorite-thiosulfate reaction. J Phys Chem 86:3907–3910CrossRefGoogle Scholar
  120. 120.
    Albahadily FN, Schell M (1998) An experimental investigation of periodic and chaotic electrochemical oscillations in the anodic dissolution of copper in phosphoric acid. J Chem Phys 88:4312–4319CrossRefGoogle Scholar
  121. 121.
    Orlik M (2012) Self-organization in electrochemical systems. I. General principles of self-organization. Temporal instabilities. In: Scholz F (ed) Monographs in electrochemistry. Springer, BerlinGoogle Scholar
  122. 122.
    Orlik M (1996) Oscillating reactions. Order and chaos. WNT, Warsaw (in Polish) Google Scholar
  123. 123.
    Zaslavsky GM, Usikov DA (2001) Weak chaos and quasi-regular patterns. Cambridge University Press, CambridgeGoogle Scholar
  124. 124.
    Klages R (2013) Weak chaos, infinite ergodic theory, and anomalous dynamics. In: Leonicini X, Leonetti M (eds) From Hamiltonian chaos to complex systems. Springer, Berlin (arXiv:1507.04255 [nlin.CD]) Google Scholar
  125. 125.
    Zaslavsky GM, Sagdeev RE (1988) Introduction to nonlinear physics. From pendulum to turbulence and chaos. Nauka, Moscow (in Russian)Google Scholar
  126. 126.
    Peitgen H-O, Jürgens H, Saupe D (1992) Fractals for the classroom. Part 1: introduction to fractals and chaos. Springer, New YorkCrossRefGoogle Scholar
  127. 127.
    McGuinness MJ (1983) The fractal dimension of the Lorenz attractor. Phys Lett A 99:5–9CrossRefGoogle Scholar
  128. 128.
    Visvanath D (2004) The fractal property of the Lorenz attractor. Physica D 190:115–128CrossRefGoogle Scholar
  129. 129.
    Mandelbrot B (1983) The fractal geometry of nature. Freeman, New YorkGoogle Scholar
  130. 130.
    Falconer K (1990) Fractal geometry. Mathematical foundations and applications. Wiley, ChichesterGoogle Scholar
  131. 131.
    May RM (1976) Simple mathematical models with very complicated dynamics. Nature 261:459–467CrossRefGoogle Scholar
  132. 132.
    Feigenbaum M (1983) Universal behavior in nonlinear systems. Physica 7D:16–39Google Scholar
  133. 133.
    Barrow-Green J (1997) Poincaré and three body problem. History of mathematics, vol 11. American Mathematical Society, Providence, Rhode Island, USAGoogle Scholar
  134. 134.
    Schöll E, Schuster HG (eds) (2008) Handbook of chaos control, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  135. 135.
    Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64:821–824CrossRefGoogle Scholar
  136. 136.
    Parmananda P, Sherard P, Rollins RW, Dewald HD (1993) Control of chaos in an electrochemical cell. Phys Rev E 47:R3003–R3006CrossRefGoogle Scholar
  137. 137.
    Parmananda P, Madrigal R, Rivera M, Nyikos L, Kiss IZ, Gáspár V (1999) Stabilization of unstable steady-states and periodic orbits in an electrochemical system using delayed-feedback control. Chaos 16:033109-1–0033109-7Google Scholar
  138. 138.
    Kiss IZ, Kazsu Z, Gáspár V (2006) Tracking unstable steady-states and periodic orbits of oscillatory and chaotic electrochemical systems using delayed feedback control. Chaos 16:033109-1–0033109-7CrossRefGoogle Scholar
  139. 139.
    Györgyi L, Field RJ (1992) A three-variable model of deterministic chaos in the Belousov–Zhabotinsky reaction. Nature 355:808–810CrossRefGoogle Scholar
  140. 140.
    Petrov V, Gáspár V, Masere J, Showalter K (1993) Controlling chaos on the Belousov–Zhabotinsky reaction. Nature 361:240–243CrossRefGoogle Scholar
  141. 141.
    Kiss IZ, Hudson JL (2003) Chemical complexity: spontaneous and engineered structures. AIChE J 49:2234–2241CrossRefGoogle Scholar
  142. 142.
    Kiss IZ, Zhai Y, Hudson JL (2002) Emerging coherence in a population of chemical oscillators. Science 296:1676–1678CrossRefGoogle Scholar
  143. 143.
    Kiss IZ, Rusin CG, Kori H, Hudson JL (2007) Engineering complex dynamical structures: sequential patterns and desynchronization. Science 316:1886–1889CrossRefGoogle Scholar
  144. 144.
    Miyakita Y, Nakabayashi S, Karantonis A (2005) Spatiotemporal coding in an electrochemical oscillatory network. Phys Rev E 71:056207-1–056207-9CrossRefGoogle Scholar
  145. 145.
    Fujii H, Sawada Y (1978) Phase-difference locking of coupled oscillating chemical systems. J Chem Phys 69:3830–3832CrossRefGoogle Scholar
  146. 146.
    Crowley MF, Epstein IR (1989) Experimental and theoretical studies of a coupled chemical oscillator: phase death, multistability and in-phase and out-of-phase entrainment. J Phys Chem 93:2496–2502CrossRefGoogle Scholar
  147. 147.
    Doumbouya SI, Schneider FW (1993) Transition from quasiperiodicity to chaos in coupled oscillators. J Phys Chem 97:6945–6947CrossRefGoogle Scholar
  148. 148.
    Votrubová V, Hasal P, Schreiberová L, Marek M (1998) Dynamical patterns in arrays of coupled chemical excitators. J Phys Chem A 102:1318–1328CrossRefGoogle Scholar
  149. 149.
  150. 150.
    Epstein IR (1989) The role of flow systems in far-from-equilibrium dynamics. J Chem Educ 66:191–195CrossRefGoogle Scholar
  151. 151.
    Kiss IZ, Zhai Y, Hudson JL (2002) Collective dynamics of a weakly coupled electrochemical reaction on an array. Ind Eng Chem Res 41:6363–6374CrossRefGoogle Scholar
  152. 152.
    Wickramasinghe M, Kiss IZ (2013) Synchronization of electrochemical oscillators. In: Mikhailov AS, Ertl G (eds) Engineering of chemical complexity. World Scientific Lecture Notes in Complex Systems, vol 11. World Scientific, Singapore, pp 101–124Google Scholar
  153. 153.
    Kapral R (2013) Nanomotors propelled by chemical reactions. In: Mikhailov AS, Ertl G (eds) Engineering of chemical complexity. World Scientific Lecture Notes in Complex Systems, vol 11. World Scientific, Singapore, pp 101–124Google Scholar
  154. 154.
    Manrubia SC, Briones C (2013) Emergence and selection of biomodules in the assembly of a protocell. In: Mikhailov AS, Ertl G (eds) Engineering of chemical complexity. World Scientific Lecture Notes in Complex Systems, vol 11. World Scientific, Singapore, pp 323–343Google Scholar
  155. 155.
    Shima SI, Kuramoto Y (2002) Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom Complex Syst 5:380–385Google Scholar
  156. 156.
    Abrams DM, Strogatz SH (2004) Chimera states for coupled oscillators. Phys Rev Lett 93:174102–174105CrossRefGoogle Scholar
  157. 157.
    Panaggio MJ, Abrams DM (2015) Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 28:R67–R87CrossRefGoogle Scholar
  158. 158.
    Wickramasinghe M, Kiss IZ (2013) Spatially organized dynamical states in chemical oscillator networks: synchronization, dynamical differentiation, and chimera patterns. PLoS One 2013:e80586CrossRefGoogle Scholar
  159. 159.
    Pojman JA, Tran-Cong-Miyata Q (2010) Nonlinear dynamics with polymers. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  160. 160.
    Schimansky-Geier L, Fiedler B, Kurths J (eds) (2007) Analysis and control of complex nonlinear processes in physics, chemistry and biology. World Scientific Lecture Notes in Complex Systems, vol 5. World Scientific, SingaporeGoogle Scholar
  161. 161.
    Mikhailov AS, Ertl G (2013) Engineering of chemical complexity. World Scientific Lecture Notes in Complex Systems, vol 11. World Scientific, SingaporeGoogle Scholar
  162. 162.
    Mikhailov AS, Ertl G (2014) Engineering of chemical complexity II. World Scientific Lecture Notes in Complex Systems, vol 12. World Scientific, SingaporeGoogle Scholar
  163. 163.
    Mikhailov AS, Ertl G (2017) Chemical complexity. Self-organization processes in molecular systems. Springer, Cham, SwitzerlandGoogle Scholar
  164. 164.
    Briggs TS, Rauscher WC (1973) An oscillating iodine clock. J Chem Educ 50:496CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of ChemistryThe University of WarsawWarsawPoland

Personalised recommendations