A Laboratory Study of Low-Temperature CO Removal from Mobile Exhaust Gas Using In-Plasma Catalysis

  • Rasoul Yarahmadi
  • Somayeh Soleimani-AlyarEmail author


The combination of nonthermal plasma (NTP) with catalytic methods has been shown to improve catalyst light-off temperature via reactions among plasma discharge products and by-products. Thus, NTP may improve selectivity, process, and removal efficiency. In this study, NTP was combined with a catalytic film of mixed metal oxides (ceria-zirconia-gamma alumina layer) in the discharge zone to investigate low-temperature CO removal. Three different reactors having identical geometries were used: a plasma reactor, a catalytic reactor, and a hybrid plasma-catalytic reactor. The CO removal efficiency of 36.5% was achieved using hybrid plasma-catalytic reactor at 80 °C with 860 J/lit. The temperature and flow rate were found to have significant impacts (P-value  ≤ 0.05), which is unexpected due to the key role of hydroxyl and active radicals induced by plasma discharge. Calculated synergy factor of about 2 signals call for further study on the hybrid properties of catalytic efficiency and plasma physics for optimal CO removal.


Carbon monoxide Conversion Plasma IPC SIE Synergy factor 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Fridman, A., Kennedy, L.A.: Plasma physics and engineering. CRC press, (2004)Google Scholar
  2. 2.
    Steinmüller, S.O.: Carbon monoxide oxidation at the interface of a direct barrier discharge and a thin layer of yttria-stabilized zirconia: characterization of discharge properties and determination of reaction rates. Ph.D theis, Faculty of Biology and Chemistry, Justus-Liebig-Universität Gießen, Germany (2014)Google Scholar
  3. 3.
    Leray, A., Makarov, M., Cormier, J.M., Khacef, A.: Plasma-assisted diesel oxidation catalyst: improvement of light-off temperature for CO and unburned hydrocarbons In: Proceedings of the XXth International Conference on Gas Discharges and their Applications 2014, pp. 582–585Google Scholar
  4. 4.
    Yu, S., Liang, Y., Sun, S., Zhang, K., Zhang, J., Fang, J.: Vehicle exhaust gas clearance by low temperature plasma-driven nano-titanium dioxide film prepared by radiofrequency magnetron sputtering. PLoS One. 8(4), e59974 (2013)CrossRefGoogle Scholar
  5. 5.
    Pârvulescu, V.I., Magureanu, M., Lukes, P.: Plasma chemistry and catalysis in gases and liquids. John Wiley & Sons, (2012)Google Scholar
  6. 6.
    Lyulyukin, M.N., Besov, A.S., Vorontsov, A.V.: The influence of corona electrodes thickness on the efficiency of plasmachemical oxidation of acetone. Plasma Chem. Plasma Process. 31(1), 23–39 (2011)CrossRefGoogle Scholar
  7. 7.
    Schmidt-Szałowski, K., Krawczyk, K., Sentek, J., Ulejczyk, B., Górska, A., Młotek, M.: Hybrid plasma-catalytic systems for converting substances of high stability, greenhouse gases and VOC. Chem. Eng. Res. Des. 89(12), 2643–2651 (2011). CrossRefGoogle Scholar
  8. 8.
    Kogelschatz, U.: Fundamentals and applications of dielectric barrier discharges. In: HAKONE VII Int. Symp. On High Pressure Low Temperature Plasma Chemistry, Greifswald 2000Google Scholar
  9. 9.
    Li, C., Liu, R., Lü, Y., Hou, X., Wu, P.: Exploration of nano-surface chemistry for spectral analysis. Chin. Sci. Bull. 58(17), 2017–2026 (2013). CrossRefGoogle Scholar
  10. 10.
    Whitehead, J.C.: Plasma catalysis: a solution for environmental problems. Pure Appl. Chem. 82(6), 1329–1336 (2010). CrossRefGoogle Scholar
  11. 11.
    Kim, H., Ogata, A., Futamura, S.: Complete oxidation of volatile organic compounds (VOCs) using plasma-driven catalysis and oxygen plasma. Int. J Plasma Environ Sci Technol. 1, 46–51 (2007)Google Scholar
  12. 12.
    Kim, K. T., Jo, S., Lee, J.O., Lee, D.H., Song, Y.H.: Removal of carbon monoxide by low temperature plasma-catalysis. In: plasma sciences (ICOPS) held with 2014 IEEE international conference on high-power particle BEAMS (BEAMS), 2014 IEEE 41st international conference on 2014, pp. 1-1. IEEEGoogle Scholar
  13. 13.
    Kirkpatrick, M.J., Odic, E., Leininger, J.P., Blanchard, G., Rousseau, S., Glipa, X.: Plasma assisted heterogeneous catalytic oxidation of carbon monoxide and unburned hydrocarbons: laboratory-scale investigations. Appl. Catal. B Environ. 106(1), 160–166 (2011). CrossRefGoogle Scholar
  14. 14.
    Flagan, R.C., Seinfeld, J.H.: Fundamentals of air pollution engineering. Courier Corporation, (2013)Google Scholar
  15. 15.
    Khacef, A., Cormier, J.M., Pouvesle, J.M., Van, T.L.: Removal of Pollutants by Atmospheric Non Thermal Plasmas. arXiv preprint arXiv:0810.5432 (2008)Google Scholar
  16. 16.
    Mizuno, A.: Recent progress and applications of non-thermal plasma. Int J Plasma Environ Sci Technol. 3(1), 1–7 (2009)Google Scholar
  17. 17.
    Brandenburg, R., Barankova, H., Bardos, L., Chmielewski, A.G., Dors, M., Grosch, H., Hołub, M., Jõgi, I., Laan, M., Mizeraczyk, J.: Plasma-based depollution of exhausts: principles, state of the art and future prospects. In: Monitoring, control and effects of air pollution. InTech, (2011)Google Scholar
  18. 18.
    Matsumoto, T., Wang, D., Namihira, T., Akiyama, H.: Non-thermal plasma technic for air pollution control. AIR POLLUTION–A COMPREHENSIVE PERSPECTIVE (2012)Google Scholar
  19. 19.
    Xiaokun, H., Jialin, S., Yuanfeng, H., Jin, H., Dongxia, Y.: Influence of Al2O3/CeZrAl composition on the catalytic behavior of Pd/Rh catalyst. J. Rare Earths. 28(1), 59–63 (2010). CrossRefGoogle Scholar
  20. 20.
    Boullosa-Eiras, S., Zhao, T., Chen, D., Holmen, A.: Effect of the preparation methods and alumina nanoparticles on the catalytic performance of Rh/ZrxCe1− xO2–Al2O3 in methane partial oxidation. Catal. Today. 171(1), 104–115 (2011). CrossRefGoogle Scholar
  21. 21.
    Benjaram, M.R., Thrimurthulu, G., Katta, L.: Nanosized unsupported and alumina-supported ceria-zirconia and ceria-terbia solid solutions for CO oxidation. Chin. J. Catal. 32(5), 800–806 (2011). CrossRefGoogle Scholar
  22. 22.
    Brinker, C.J., Scherer, G.W.: Sol-gel science: the physics and chemistry of sol-gel processing. Academic press, (2013)Google Scholar
  23. 23.
    Fu, Q., Cao, C.B., Zhu, H.S.: Preparation of alumina films from a new sol–gel route. Thin Solid Films. 348(1–2), 99–102 (1999). CrossRefGoogle Scholar
  24. 24.
    Rami, M.L., Meireles, M., Cabane, B., Guizard, Ch.: Colloidal stability for concentrated zirconia aqueous suspensions. Journal of the American Ceramic Society 92(n°S1), pp. S50-S56 (2009)CrossRefGoogle Scholar
  25. 25.
    Kumar, R., Siril, P.F.: Preparation and characterization of polyvinyl alcohol stabilized griseofulvin nanoparticles. Mater Today: Proc. 3(6), 2261–2267 (2016)Google Scholar
  26. 26.
    Abdul Kareem, T., Anu Kaliani, A.: Synthesis and thermal study of octahedral silver nanoplates in polyvinyl alcohol (PVA). Arab. J. Chem. (2011). CrossRefGoogle Scholar
  27. 27.
    Nazari, S., Karimi, G., Ghaderi, E., Mansouri Moradian, K., Bagherpor, Z.: Synthesis and characterization of γ-alumina porous nanoparticles from sodium aluminate liquor with two different surfactants. Int J Nanosci Nanotechnol. 12(4), 207–214 (2016)Google Scholar
  28. 28.
    Paredes, R., Amico, S., d'Oliveira, A.: The effect of roughness and pre-heating of the substrate on the morphology of aluminium coatings deposited by thermal spraying. Surf. Coat. Technol. 200(9), 3049–3055 (2006)CrossRefGoogle Scholar
  29. 29.
    Yarahmadi, R., Mortazavi, S.B., Moridi, P.: Development of air treatment technology using plasma method. Int J Occup Hygiene. 4(1), 27–35 (2015)Google Scholar
  30. 30.
    Yarahmadi, R., Mortazavi, S.B., Omidkhah, M.R., Asilyan, H., Moridi, P.: Examination of the optimized conditions for the conversion of NOx pollution in DBD plasma reactor. Iran. J. Chem. Chem. Eng. 29(1), 133–140 (2010)Google Scholar
  31. 31.
    Leray, A., Guy, A., Makarov, M., Lombaert, K., Cormier, J.M., Khacef, A.: Plasma-assisted diesel oxidation catalyst on bench scale: focus on light-off temperature and NOx behavior. Top. Catal. 56(1–8), 222–226 (2013)CrossRefGoogle Scholar
  32. 32.
    Sivachandiran, L., Karuppiah, J., Subrahmanyam, C.: DBD plasma reactor for oxidative decomposition of chlorobenzene. Int. J. Chem. React. Eng. 10(1), (2012).
  33. 33.
    Kang, K., Park, K., Yi, S., Kim, H.G., Choi, W., Traversa, E.: Preparation of ceramic composite membranes by microwave heating. J. Korean Phys. Soc. 45(1), 138–140 (2004)Google Scholar
  34. 34.
    Liu, N., Gao, Y.X., Wang, W.D., Huang, W.X.: Cu-co composite oxides supported on multi-walled carbon nanotubes for catalytic removal of CO in a H2-rich stream. Chin. J. Chem. Phys. 27(5), 523–529 (2014). CrossRefGoogle Scholar
  35. 35.
    Wongkaew, A., Kongsi, W., Limsuwan, P.: Physical properties and selective CO oxidation of coprecipitated CuO/CeO2 catalysts depending on the CuO in the samples. Adv. Mater. Sci. Eng. 2013, 1–8 (2013). CrossRefGoogle Scholar
  36. 36.
    Aunbamrung, P., Wongkaew, A.: Effect of cu loading to catalytic selective CO oxidation of CuO/CeO2–Co3O4. Adv Chem Eng Sci. 3(04), 15 (2013). CrossRefGoogle Scholar
  37. 37.
    Maciel, C.G., de Freitas Silva, T., Hirooka, M.I., Belgacem, M.N., Assaf, J.M.: Effect of nature of ceria support in CuO/CeO2 catalyst for PROX-CO reaction. Fuel. 97, 245–252 (2012). CrossRefGoogle Scholar
  38. 38.
    Liu, Y., Fu, Q., Stephanopoulos, M.: Preferential oxidation of CO in H2 over CuO-CeO2 catalysts. Catal. Today. 93, 241–246 (2004). CrossRefGoogle Scholar
  39. 39.
    Ahmed, S., Aitani, A., Rahman, F., Al-Dawood, A., Al-Muhaish, F.: Decomposition of hydrocarbons to hydrogen and carbon. Appl. Catal. A Gen. 359(1), 1–24 (2009). CrossRefGoogle Scholar
  40. 40.
    Kim, H.H., Teramoto, Y., Negishi, N., Ogata, A.: A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: a review. Catal. Today. 256(1), 13–22 (2015). CrossRefGoogle Scholar
  41. 41.
    synergistic effect. from website. Retrieved 25 November 2019
  42. 42.
    Lucas, J.A.: Phytophthora: Symposium of the British Mycological Society, the British Society for Plant Pathology and the Society of Irish Plant Pathologists Held at Trinity College, Dublin September 1989, vol. 17. Cambridge University Press, (1991)Google Scholar
  43. 43.
    Zou, J.J., Liu, C.J.: Utilization of carbon dioxide through nonthermal plasma approaches. handbook of Carbon Dioxide as Chemical Feedstock, chater 10, 1 edition, 267–290 (2010)Google Scholar
  44. 44.
    Sultana, S., Vandenbroucke, A., Leys, C., De Geyter, N., Morent, R.: Abatement of VOCs with alternate adsorption and plasma-assisted regeneration: a review. Catalysts. 5(2), 718–746 (2015). CrossRefGoogle Scholar
  45. 45.
    Wang, Z.: Reaction mechanism of N0x destruction by non-thermal plasma discharge. Ph.D thesis in Chemistry, department of Chemistry, B.A. Sichuan university, Atlanta, Georgia (1999)Google Scholar
  46. 46.
    Soleimani-Alyar, S., Yarahmadi, R.: CO removal using single stage plasma-catalytic hybrid process in laboratory scale. J Environ Stud. 44(4), 22–24 (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Air Pollution Research Center, Department of Occupational HealthIran University of Medical Sciences (IUMS)TehranIran
  2. 2.Air Pollution Research CenterIran University of Medical Sciences (IUMS)TehranIran

Personalised recommendations