Advertisement

Kinetic Modelling of Co3O4- and Pd/Co3O4-Catalyzed Wet Lean Methane Combustion

  • Somaye Nasr
  • Natalia Semagina
  • Robert E. HayesEmail author
SPECIAL ISSUE: 2019 MODEGAT September 8-10, Bad Herrenalb, Germany
  • 28 Downloads

Abstract

Reaction kinetics of methane combustion is investigated on Co3O4 and Pd/Co3O4 (0.27 wt% Pd) catalysts for a fuel-lean feed. The temperature ranges between 250 and 550 °C in the presence of 5 and 10 vol% water with CH4 concentrations that varied between 1000 and 5000 ppmv. Significant cobalt oxide contribution to the activity of the bimetallic catalyst is observed, especially at higher water concentration and lower temperature (up to 70%). Co3O4 demonstrates first order to CH4, 0 order to H2O and activation energy of 69 kJ/mol. Pd/Co3O4 catalyst shows first order to CH4, negative 0.37 order to H2O and an observed activation energy of 90.7 kJ/mol, which is corrected for water adsorption to 60.6 kJ/mol. The latter is a typical activation energy for Pd/Al2O3 catalyst at similar conditions, indicating that the Co3O4 contribution is not only in performing the methane combustion itself but also in supplying surface oxygen rather than in affecting the activation energy. The kinetic evidence shows that the observed behaviour of Pd/Co3O4 catalyst is not a summation of individual activities of Co3O4 and Pd, but rather the effect of strong metal-support interactions (SMSI).

Keywords

Methane combustion Cobalt oxide Water effect Reaction kinetics Strong metal-support interactions 

Notes

Acknowledgements

We thank Dr. Jing Shen for performing the TEM and CO chemisorption analyses.

Funding Information

Financial support was from Natural Sciences and Engineering Research Council of Canada (NSERC Strategic grant STPGP 478979-15).

Compliance with Ethical Standards

.

Supplementary material

40825_2019_143_MOESM1_ESM.docx (211 kb)
ESM 1 (DOCX 210 kb)

References

  1. 1.
    Li, Z., Hoflund, G.B.: Catalytic oxidation of methane over Pd/Co3O4. React. Kinet. Catal. Lett. 66(2), 367–374 (1999)CrossRefGoogle Scholar
  2. 2.
    Zasada, F., Janas, J., Piskorz, W., Gorczyńska, M., Sojka, Z.: Total oxidation of lean methane over cobalt spinel nanocubes controlled by the self-adjusted redox state of the catalyst: experimental and theoretical account for interplay between the Langmuir-Hinshelwood and Mars-van Krevelen mechanisms. ACS Catal. 7, 2853–2867 (2017)CrossRefGoogle Scholar
  3. 3.
    Sokolovskii, V.D.: Principles of oxidative catalysis on solid oxides. Catal. Rev. 32, 1–49 (1990)CrossRefGoogle Scholar
  4. 4.
    Piskorz, W., Gryboś, J., Sojka, Z., Indyka, P., Zasada, F., Janas, J.: Reactive oxygen species on the (100) facet of cobalt spinel nanocatalyst and their relevance in 16O2 / 18O2 isotopic exchange, de N2O, and de CH4 processes—a theoretical and experimental account. ACS Catal. 5, 6879–6892 (2015)CrossRefGoogle Scholar
  5. 5.
    Setiawan, A., Kennedy, E.M., Dlugogorski, B.Z., Adesina, A.A., Stockenhuber, M.: The stability of Co3O4, Fe2O3, Au/Co3O4 and Au/Fe2O3 catalysts in the catalytic combustion of lean methane mixtures in the presence of water. Catal. Today. 258, 276–283 (2015)CrossRefGoogle Scholar
  6. 6.
    Hu, L., Peng, Q., Li, Y.: Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 130, 16136–16137 (2008)CrossRefGoogle Scholar
  7. 7.
    Hu, W., Lan, J., Guo, Y., Cao, X.-M., Hu, P.: Origin of efficient catalytic combustion of methane over Co3O4(110): active low-coordination lattice oxygen and cooperation of multiple active sites. ACS Catal. 6, 5508–5519 (2016)CrossRefGoogle Scholar
  8. 8.
    Choya, A., de Rivas, B., González-Velasco, J.R., Gutiérrez-Ortiz, J.I., López-Fonseca, R.: Oxidation of residual methane from VNG vehicles over Co3O4-based catalysts: comparison among bulk, Al2O3-supported and Ce-doped catalysts. Appl. Catal. B Environ. 237, 844–854 (2018)CrossRefGoogle Scholar
  9. 9.
    Teng, F., Chen, M., Li, G., Teng, Y., Xu, T., Hang, Y., Yao, W., Santhanagopalan, S., Meng, D.D., Zhu, Y.: High combustion activity of CH4 and catalluminescence properties of CO oxidation over porous Co3O4 nanorods. Appl. Catal. B Environ. 110, 133–140 (2011)CrossRefGoogle Scholar
  10. 10.
    Willis, J.J., Goodman, E.D., Wu, L., Riscoe, A.R., Martins, P., Tassone, C.J., Cargnello, M.: Systematic identification of promoters for methane oxidation catalysts using size- and composition-controlled Pd-based bimetallic nanocrystals. J. Am. Chem. Soc. 139, 11989–11997 (2017)CrossRefGoogle Scholar
  11. 11.
    Stefanov, P., Todorova, S., Naydenov, A., Tzaneva, B., Kolev, H., Atanasova, G., Stoyanova, D., Karakirova, Y., Aleksieva, K.: On the development of active and stable Pd-co/γ-Al2O3 catalyst for complete oxidation of methane. Chem. Eng. J. 266, 329–338 (2015)CrossRefGoogle Scholar
  12. 12.
    Chlebda, D., Gierada, M., Łojewska, J., Jędrzejczyk, R.J., Jodłowski, P.J.: In situ spectroscopic studies of methane catalytic combustion over co, Ce, and Pd mixed oxides deposited on a steel surface. J. Catal. 350, 1–12 (2017)CrossRefGoogle Scholar
  13. 13.
    Ercolino, G., Grzybek, G., Stelmachowski, P., Specchia, S., Kotarba, A., Specchia, V.: Pd/Co3O4-based catalysts prepared by solution combustion synthesis for residual methane oxidation in lean conditions. Catal. Today. 257, 66–71 (2015)CrossRefGoogle Scholar
  14. 14.
    Zhao, C., Zhao, Y., Li, S., Sun, Y.: Effect of Pd doping on CH4 reactivity over Co3O4 catalysts from density-functional theory calculations. Cuihua Xuebao/Chinese J. Catal. 38, 813–820 (2017)CrossRefGoogle Scholar
  15. 15.
    Hu, L., Peng, Q., Li, Y.: Low-temperature CH4 catalytic combustion over Pd catalyst supported on Co3O4 nanocrystals with well-defined crystal planes. ChemCatChem. 3, 868–874 (2011)CrossRefGoogle Scholar
  16. 16.
    Ercolino, G., Stelmachowski, P., Grzybek, G., Kotarba, A., Specchia, S.: Optimization of Pd catalysts supported on Co3O4 for low-temperature lean combustion of residual methane. Appl. Catal. B Environ. 206, 712–725 (2017)CrossRefGoogle Scholar
  17. 17.
    Boreskov, G.K., Muzykantov, V.S.: Investigation of oxide-type oxidation catalysts by reactions of oxygen isotopic exchange. Ann. N. Y. Acad. Sci. 213, 137–170 (1973)CrossRefGoogle Scholar
  18. 18.
    Schwartz, W.R., Pfefferle, L.D.: Combustion of methane over palladium-based catalysts: support interactions. J. Phys. Chem. C. 116, 8571–8578 (2012)CrossRefGoogle Scholar
  19. 19.
    Schwartz, W.R., Ciuparu, D., Pfefferle, L.D.: Combustion of methane over palladium-based catalysts: catalytic deactivation and role of the support. J. Phys. Chem. C. 116, 8587–8593 (2012)CrossRefGoogle Scholar
  20. 20.
    Nassiri, H., Lee, K.-E., Hu, Y., Hayes, R.E., Scott, R.W.J., Semagina, N.: Water shifts PdO-catalyzed lean methane combustion to Pt-catalyzed rich combustion in Pd-Pt catalysts: in situ X-ray absorption spectroscopy. J. Catal. 352, 649–656 (2017)CrossRefGoogle Scholar
  21. 21.
    Abbasi, R., Wu, L., Wanke, S.E., Hayes, R.E.: Kinetics of methane combustion over Pt and Pt-Pd catalysts. Chem. Eng. Res. Des. 90, 1930–1942 (2012)CrossRefGoogle Scholar
  22. 22.
    Patterson, A.: The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939)CrossRefGoogle Scholar
  23. 23.
    Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriquez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem.; aop. (2015).  https://doi.org/10.1515/pac-2014-117
  24. 24.
    Zhu, G., Han, J., Zemlyanov, D.Y., Ribeiro, F.H.: The turnover rate for the catalytic combustion of methane over palladium is not sensitive to the structure of the catalyst. J. Am. Chem. Soc. 126, 9896–9897 (2004)CrossRefGoogle Scholar
  25. 25.
    Ribeiro, F.H., Chow, M., Dalla Betta, R.A.: Kinetics of the complete oxidation of methane over supported palladium catalysts. J. Catal. 146, 537–544 (1994)CrossRefGoogle Scholar
  26. 26.
    Lewis, F.B., Saunders, N.H.: The thermal conductivity of NiO and CoO at the Neel temperature. J. Phys. C: Solid State Phys. 6, 2525–2532 (1973)CrossRefGoogle Scholar
  27. 27.
    Gierman, H.: Design of laboratory hydrotreating reactors. Scaling down of trickle-flow reactors. Appl. Catal. 43, 277–286 (1998)CrossRefGoogle Scholar
  28. 28.
    Zasada, F., Piskorz, W., Cristol, S., Paul, J.-F., Kotarba, A., Sojka, Z.: Periodic density functional theory and atomistic thermodynamic studies of cobalt spinel nanocrystals in wet environment: molecular interpretation of water adsorption equilibria. J. Phys. Chem. C. 114, 22245–22253 (2010)CrossRefGoogle Scholar
  29. 29.
    Fujimoto, K.-I., Ribeiro, F.H., Avalos-Borja, M., Iglesia, E.: Structure and reactivity of PdOx/ZrO2 catalysts for methane oxidation at low temperatures. J. Catal. 179, 431–442 (1998)CrossRefGoogle Scholar
  30. 30.
    Alyani, M., Smith, K.J.: kinetic analysis of the inhibition of CH4 oxidation by H2O on PdO/Al2O3 and CeO2/PdO/Al2O3 catalysts. Ind. Eng. Chem. Res. 55, 8309–8318 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Somaye Nasr
    • 1
  • Natalia Semagina
    • 1
  • Robert E. Hayes
    • 1
    Email author
  1. 1.Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations