Emission Control Science and Technology

, Volume 5, Issue 4, pp 297–306 | Cite as

Nature and Surface Interactions of Sulfur-Containing Deposits on V2O5-WO3/TiO2 Catalysts for SCR-DeNOx

  • Thomas Rammelt
  • Agnieszka-Beata Kuc
  • Jürgen Böhm
  • Thomas Heine
  • Roger GläserEmail author
Special Issue: In Recognition of Professor Wolfgang Grünert's Contributions to the Science and Fundamentals of Selective Catalytic Reduction of NOx


Sulfur-containing deposits form on a monolithic V2O5-WO3/TiO2 (VWT) catalyst during SCR-DeNOx with NH3 at 473 and 523 K and pressures up to 500 kPa in the presence of SO2 with sulfate contents of 1.7 to 13.0 wt%. Using thermogravimetric analysis and diffuse reflectance infrared spectroscopy, these deposits are determined to be mainly NH4HSO4 for SCR temperatures > 523 K. At lower temperatures, (NH4)2SO4 is formed. The thermal stability of NH4HSO4 supported on different transition metal oxides including V2O5, WO3, TiO2, MoO3, and Al2O3 varies with decomposition temperatures from 620 to 820 K. Using DFT calculations, it is shown that the thermal stability of supported NH4HSO4 is mainly determined by hydrogen bonding of the HSO4 anions with the metal oxide surface. Increasing electronegativity of the metal atoms of the support oxide leads to weakening of the S-O bonds in the HSO4 anions and to lower decomposition temperatures of the supported NH4HSO4.




Compliance with Ethical Standards

The authors declare that they have no competing interests.


  1. 1.
    Hu, Y., Griffiths, K., Norton, P.R.: Surf. Sci. 603, 1740–1750 (2009)Google Scholar
  2. 2.
    Selvam, M., Vigneshwaran, M., Irudhayaraj, R., Palani, S.: Indian J. Sci. Technol. 9, (2016)Google Scholar
  3. 3.
    Brüstle C., Downey M., Subramaniam M., Birckett A., Tomazic D. (Ed.).: Aftertreatment in a Pre-Turbo Position: Size and Fuel Consumption Advantage for Tier 4 Large-Bore Diesel Engines, 2011.Google Scholar
  4. 4.
    Kröcher, O., Elsener, M., Bothien, M.-R., Dölling, W.: MTZ. 68–73 (2014)Google Scholar
  5. 5.
    V. Joergl, P. Keller, O. Weber, K. Mueller-Haas, R. Konieczny: SAE Technical paper (2008).Google Scholar
  6. 6.
    Fujibayashi, T., Baba, S., Tanaka, H.: CIMAC Congress 2013. Shanghai. (2013)Google Scholar
  7. 7.
    Rammelt, T., Torkashvand, B., Hauck, C., Böhm, J., Gläser, R., Deutschmann, O.: Emiss. Control Sci. Technol. 3, 275–288 (2017)Google Scholar
  8. 8.
    Bank R., Buchholz B., Harndorf H., Rabe R., Etzien U.: Analyse des Konversionsverhaltens von SCR-Katalysatoren unter den Betriebsbedingungen IMO Tier III konformer Großdieselmotoren, 2. Rostocker Großmotorentagung, Rostock, 17.09.2012.Google Scholar
  9. 9.
    Dunn, J.P., Jehng, J.-M., Du Kim, S., Briand, L.E., Stenger, H.G., Wachs, I.E.: J. Phys. Chem. B. 102, 6212–6218 (1998)Google Scholar
  10. 10.
    Svachula, J., Alemany, L.J., Ferlazzo, N., Forzatti, P., Tronconi, E., Bregani, F.: Ind. Eng. Chem. Res. 32, 826–834 (1993)Google Scholar
  11. 11.
    Kamata, H., Ohara, H., Takahashi, K., Yukimura, A., Seo, Y.: Catal. Lett. 73, 79–83 (2001)Google Scholar
  12. 12.
    Chen, J.P., Buzanowski, M.A., Yang, R.T., Cichanowicz, J.E.: J. Air Waste Manage. Assoc. 40, 1403–1409 (1990)Google Scholar
  13. 13.
    Dunn, J.P., Koppula, P.R., Stenger, H.G., Wachs, I.E.: Appl. Catal. B. 19, 103–117 (1998)Google Scholar
  14. 14.
    Zhang, L., Li, L., Cao, Y., Yao, X., Ge, C., Gao, F., Deng, Y., Tang, C., Dong, L.: Appl. Catal. B. 165, 589–598 (2015)Google Scholar
  15. 15.
    Magnusson, M., Fridell, E., Ingelsten, H.H.: Appl. Catal. B. 111-112, 20–26 (2012)Google Scholar
  16. 16.
    Baltin, G., Köser, H., Wendlandt, K.-P.: Catal. Today. 75, 339–345 (2002)Google Scholar
  17. 17.
    Song, L., Chao, J., Fang, Y., He, H., Li, J., Qiu, W., Zhang, G.: Chem. Eng. J. 303, 275–281 (2016)Google Scholar
  18. 18.
    Huang, Z.: J. Catal. 214, 213–219 (2003)Google Scholar
  19. 19.
    Huang, Z., Zhu, Z., Liu, Z.: Appl. Catal. B. 39, 361–368 (2002)Google Scholar
  20. 20.
    Xu, W., He, H., Yu, Y.: J. Phys. Chem. C. 113, 4426–4432 (2009)Google Scholar
  21. 21.
    Zang, S., Zhang, G., Qiu, W., Song, L., Zhang, R., He, H.: Chin. J. Catal. 37, 888–897 (2016)Google Scholar
  22. 22.
    Li, C., Shen, M., Yu, T., Wang, J., Wang, J., Zhai, Y.: Phys. Chem. Chem. Phys. (2017)Google Scholar
  23. 23.
    Khodayari, R., Ingemar Odenbrand, C.U.: Appl. Catal. B. 33, 277–291 (2001)Google Scholar
  24. 24.
    Phil, H.H., Reddy, M.P., Kumar, P.A., Ju, L.K., Hyo, J.S.: Appl. Catal. B. 78, 301–308 (2008)Google Scholar
  25. 25.
    Matsuda, S., Kamo, T., Kato, A., Nakajima, F., Kumura, T., Kuroda, H.: Ind. Eng. Chem. Prod. Res. Dev. 21, 48–52 (1982)Google Scholar
  26. 26.
    Ji, P., Gao, X., Du, X., Zheng, C., Luo, Z., Cen, K.: Catal. Sci. Technol. 6, 1187–1194 (2016)Google Scholar
  27. 27.
    Shen, B., Wang, F., Zhao, B., Li, Y., Wang, Y.: J. Ind. Eng. Chem. 33, 262–269 (2016)Google Scholar
  28. 28.
    Shi, Y.-J., Fan, H.-M., Zhang, Y.-P., Shu, H., Zhang, Y.-h.: L.-j. Yang. Fuel Process. Technol. (2016)Google Scholar
  29. 29.
    Ye, D., Qu, R., Song, H., Gao, X., Luo, Z., Ni, M., Cen, K.: Chem. Eng. J. 283, 846–854 (2016)Google Scholar
  30. 30.
    Ye, D., Qu, R., Song, H., Zheng, C., Gao, X., Luo, Z., Ni, M., Cen, K.: RSC Adv. 6, 55584–55592 (2016)Google Scholar
  31. 31.
    Li, Q., Chen, S., Liu, Z., Liu, Q.: Appl. Catal. B. 164, 475–482 (2015)Google Scholar
  32. 32.
    Ma, Z., Wu, X., Feng, Y., Si, Z., Weng, D., Shi, L.: Prog. Nat. Sc.i Mat. Int. 25, 342–352 (2015)Google Scholar
  33. 33.
    Zhu, Z., Niu, H., Liu, Z., Liu, S.: J. Catal. 195, 268–278 (2000)Google Scholar
  34. 34.
    Li, P., Liu, Q., Liu, Z.: Chem. Eng. J. 181-182, 169–173 (2012)Google Scholar
  35. 35.
    Thege, I.K.: Thermochim. Acta. 60, 149–159 (1983)Google Scholar
  36. 36.
    Kosova, D.A., Emelina, A.L., Bykov, M.A.: Thermochim. Acta. 595, 61–66 (2014)Google Scholar
  37. 37.
    Yang, W., Liu, F., Xie, L., Lian, Z., He, H.: Ind. Eng. Chem. Res. 55, 2677–2685 (2016)Google Scholar
  38. 38.
    Zhu, Z., Liu, Z., Niu, H., Liu, S., Hu, T., Liu, T., Xie, Y.: J. Catal. 197, 6–16 (2001)Google Scholar
  39. 39.
    Li, J., Peng, Y., Chang, H., Li, X., Rittenden, J.C., Hao, J.: Front. Environ. Sci. Eng. (2016)Google Scholar
  40. 40.
    Bai, S., Wang, Z., Li, H., Xu, X., Liu, M.: Fuel. 194, 36–41 (2017)Google Scholar
  41. 41.
    Wei, L., Cui, S., Guo, H., Ma, X., Zhang, L.: J. Mol. Catal. A Chem. 421, 102–108 (2016)Google Scholar
  42. 42.
    Wu, Q., Gao, H., He, H.: J. Phys.Chem. B. 110, 8320–8324 (2006)Google Scholar
  43. 43.
    Du, X., Gao, X., Qiu, K., Luo, Z., Cen, K.: J. Phys. Chem. C. 119, 1905–1912 (2015)Google Scholar
  44. 44.
    Broclawik, E., Góra, A., Najbar, M.: J. Mol. Catal. A Chem. 166, 31–38 (2001)Google Scholar
  45. 45.
    te Velde, G., Bickelhaupt, F.M., Baerends, E.J., Fonseca Guerra, C., van Gisbergen, S.J.A., Snijders, J.G., Ziegler, T.: J. Comput. Chem. 22, 931–967 (2001)Google Scholar
  46. 46.
    Fonseca Guerra, C., Snijders, J.G., te Velde, G., Baerends, E.J.: Theoretical Chemistry Accounts: Theory, Computation, and Modeling. Theor. Chim. Acta. 99, 391–403 (1998)Google Scholar
  47. 47.
    E.J. Baerends, T. Ziegler, A.J. Atkins, J. Autschbach, et al. ADF2017, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, Accessed 17 Aug 2019
  48. 48.
    Du, X., Gao, X., Hu, W., Yu, J., Luo, Z., Cen, K.: J. Phys. Chem. C. 118, 13617–13622 (2014)Google Scholar
  49. 49.
    Tognetti, V., Morell, C., Joubert, L.: Chem. Phys. Lett. 635, 111–115 (2015)Google Scholar
  50. 50.
    Seo, P.W., Park, K.H., Hong, S.C.: J. Ind. Eng. Chem. 16, 283–287 (2010)Google Scholar
  51. 51.
    National Institute of Advanced Industrial Science and Technology, SDBS, available at (accessed on 12.03.2017).
  52. 52.
    Li, P., Liu, Z., Li, Q., Wu, W., Liu, Q.: Ind. Eng. Chem. Res. 53, 7910–7916 (2014)Google Scholar
  53. 53.
    Guo, X., Bartholomew, C., Hecker, W., Baxter, L.L.: Appl. Catal. B. 92, 30–40 (2009)Google Scholar
  54. 54.
    Lin, X.H., Yin, X.J., Liu, J.Y., Yau Li, S.F.: Appl. Catal. B. 203, 731–739 (2017)Google Scholar
  55. 55.
    Tsilomelekis, G., Christodoulakis, A., Boghosian, S.: Catal. Today. 127, 139–147 (2007)Google Scholar
  56. 56.
    Wachs, I.E.: Catalysis. 13, 37–54 (1997)Google Scholar
  57. 57.
    Wachs, I.E.: Catal. Today. 100, 79–94 (2005)Google Scholar
  58. 58.
    Dinse, A., Frank, B., Hess, C., Habel, D., Schomäcker, R.: J. Mol. Catal. A Chem. 289, 28–37 (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Chemical TechnologyLeipzigGermany
  2. 2.Helmholtz-Zentrum Dresden-RossendorfLeipzigGermany
  3. 3.Theoretical ChemistryTU DresdenDresdenGermany

Personalised recommendations