Emission Control Science and Technology

, Volume 5, Issue 4, pp 328–341 | Cite as

CuO/Zn-CeO2 Nanocomposite as an Efficient Catalyst for Enhanced Diesel Soot Oxidation

  • Perala Venkataswamy
  • Deshetti Jampaiah
  • Deboshree Mukherjee
  • Benjaram M. ReddyEmail author
Special Issue: In Recognition of Professor Wolfgang Grünert's Contributions to the Science and Fundamentals of Selective Catalytic Reduction of NOx


Development of non-noble metal catalysts with improved structural, surface, and redox properties for catalytic soot oxidation has gained an enormous interest. Among practical alternatives, ceria-supported transition metal oxides have been proved to be the satisfactory catalysts for soot oxidation due to their outstanding redox properties and oxygen transfer capability promoted by the strong interaction between metal oxide and ceria interfaces. Following the above considerations, in the present work, CuO/Zn-CeO2 nanocomposite was prepared by a wet impregnation method and investigated for catalytic soot oxidation. To probe the significance of nanocomposites, pure counterparts, namely, CuO/CeO2, CuO/ZnO, and Zn-CeO2, were also synthesized. Various characterization techniques, namely, TEM-HRTEM, N2O chemisorption, XRD, ICP-OES, BET, Raman, XPS, and H2-TPR, were employed to investigate the structural, surface, and redox properties. Pure CuO/ZnO and CuO/CeO2 catalysts showed a soot oxidation activity with a T50 of 613 and 526 °C, respectively, under the practical conditions of NO concentration of 500 ppm and 20% O2. Interestingly, the CuO/Zn-CeO2 nanocomposite exhibited a remarkable higher soot oxidation activity with a T50 of 460 °C. The enhancement in the soot oxidation activity has been attributed to a strong interaction between the highly dispersed CuO and Zn-CeO2 support, which resulted in the desired textural properties and abundant surface defects (Ce3+ species as well as oxygen vacancies). In addition, the long-term stability test verifies an excellent reusability of the CuO/Zn-CeO2 nanocomposite towards soot oxidation without appreciable loss in the activity. The present study demonstrates the significance of ceria-based nanocomposite catalysts for environmental pollutant abatement.

Graphical abstract


CuO/Zn-CeO2 nanocomposite Ceria CuO dispersion Oxygen vacancies Soot oxidation 



P.V. gratefully thanks the Science and Engineering Research Board (SERB) (No. EMR/2016/001533), Department of Science and Technology (DST), New Delhi, for Research Associateship. B.M.R. thanks the Department of Atomic Energy (DAE), Mumbai, for the award of Raja Ramanna Fellowship. The authors acknowledge the facilities and the scientific and technical assistance of the RMIT Microscopy & Microanalysis Facility (RMMF), a linked laboratory of Microscopy Australia.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

40825_2019_137_MOESM1_ESM.doc (611 kb)
ESM 1 (DOC 611 kb)


  1. 1.
    Venkataswamy, P., Jampaiah, D., Rao, K.N., Reddy, B.M.: Nanostructured Ce0.7Mn0.3O2−δ and Ce0.7Fe0.3O2−δ solid solutions for diesel soot oxidation. Appl. Catal. A Gen. 488, 1–10 (2014)Google Scholar
  2. 2.
    Rao, K.N., Venkataswamy, P., Reddy, B.M.: Structural characterization and catalytic evaluation of supported copper–ceria catalysts for soot oxidation. Ind. Eng. Chem. Res. 50(21), 11960–11969 (2011)Google Scholar
  3. 3.
    Boger, T., Rose, D., Nicolin, P., Gunasekaran, N., Glasson, T.: Oxidation of soot (Printex® U) in particulate filters operated on gasoline engines. Emission Control Sci. Technol. 1(1), 49–63 (2015)Google Scholar
  4. 4.
    Kim, Y., Hwang, S., Lee, J., Ryou, Y., Lee, H., Kim, C.H., Kim, D.H.: Comparison of NOx adsorption/desorption behaviors over Pd/CeO2 and Pd/SSZ-13 as passive NOx adsorbers for cold start application. Emission Control Sci. Technol. 5(2), 172–182 (2019)Google Scholar
  5. 5.
    Legutko, P., Pęza, J., Villar Rossi, A., Marzec, M., Jakubek, T., Kozieł, M., Adamski, A.: Elucidation of unexpectedly weak catalytic effect of doping with cobalt of the cryptomelane and birnessite systems active in soot combustion. Top. Catal. (2019). Google Scholar
  6. 6.
    Jakubek, T., Ralphs, K., Kotarba, A., Manyar, H.: Nanostructured potassium-manganese oxides decorated with Pd nanoparticles as efficient catalysts for low-temperature soot oxidation. Catal. Lett. 149(1), 100–106 (2019)Google Scholar
  7. 7.
    Zhang, H., Li, S., Lin, Q., Feng, X., Chen, Y., Wang, J.: Study on hydrothermal deactivation of Pt/MnOx-CeO2 for NOx-assisted soot oxidation: redox property, surface nitrates, and oxygen vacancies. Environ. Sci. Pollut. Res. 25(16), 16061–16070 (2018)Google Scholar
  8. 8.
    Wei, Y., Wu, Q., Xiong, J., Li, J., Liu, J., Zhao, Z., Hao, S.: Efficient catalysts of supported PtPd nanoparticles on 3D ordered macroporous TiO2 for soot combustion: synergic effect of Pt-Pd binary components. Catal. Today. 327, 143–153 (2019)Google Scholar
  9. 9.
    Devaiah, D., Tsuzuki, T., Aniz, C.U., Reddy, B.M.: Enhanced CO and soot oxidation activity over Y-doped ceria–zirconia and ceria–lanthana solid solutions. Catal. Lett. 145(5), 1206–1216 (2015)Google Scholar
  10. 10.
    Jampaiah, D., Venkataswamy, P., Coyle, V.E., Reddy, B.M., Bhargava, S.K.: Low-temperature CO oxidation over manganese, cobalt, and nickel doped CeO2 nanorods. RSC Adv. 6(84), 80541–80548 (2016)Google Scholar
  11. 11.
    Mukherjee, D., Venkataswamy, P., Devaiah, D., Rangaswamy, A., Reddy, B.M.: Crucial role of titanium dioxide support in soot oxidation catalysis of manganese doped ceria. Catal. Sci. Technol. 7(14), 3045–3055 (2017)Google Scholar
  12. 12.
    Mukherjee, D., Rao, B.G., Reddy, B.M.: CO and soot oxidation activity of doped ceria: influence of dopants. Appl. Catal. B Environ. 197, 105–115 (2016)Google Scholar
  13. 13.
    Fu, M., Yue, X., Ye, D., Ouyang, J., Huang, B., Wu, J., Liang, H.: Soot oxidation via CuO doped CeO2 catalysts prepared using coprecipitation and citrate acid complex-combustion synthesis. Catal. Today. 153(3), 125–132 (2010)Google Scholar
  14. 14.
    Huang, H., Liu, J., Sun, P., Ye, S., Liu, B.: Effects of Mn-doped ceria oxygen-storage material on oxidation activity of diesel soot. RSC Adv. 7(12), 7406–7412 (2017)Google Scholar
  15. 15.
    Neelapala, S.D., Dasari, H.: Catalytic soot oxidation activity of Cr-doped ceria (Ce1-xCrxO2-δ) synthesized by sol-gel method with organic additives. Mater. Sci. Energy Technol. 1(2), 155–159 (2018)Google Scholar
  16. 16.
    Rangaswamy, A., Sudarsanam, P., Reddy, B.M.: Rare earth metal doped CeO2-based catalytic materials for diesel soot oxidation at lower temperatures. J. Rare Earths. 33(11), 1162–1169 (2015)Google Scholar
  17. 17.
    He, J., Reddy, G.K., Thiel, S.W., Smirniotis, P.G., Pinto, N.G.: Simultaneous removal of elemental mercury and NO from flue gas using CeO2 modified MnOx/TiO2 materials. Energy Fuel. 27, 4832–4839 (2013)Google Scholar
  18. 18.
    Zhai, G., Wang, J., Chen, Z., Yang, S., Men, Y.: Highly enhanced soot oxidation activity over 3DOM Co3O4-CeO2 catalysts by synergistic promoting effect. J. Hazard. Mater. 363, 214–226 (2019)Google Scholar
  19. 19.
    Zhang, H., Zhou, C., Galvez, M.E., Da Costa, P., Chen, Y.: MnOx-CeO2 mixed oxides as the catalyst for NO-assisted soot oxidation: the key role of NO adsorption/desorption on catalytic activity. Appl. Surf. Sci. 462, 678–684 (2018)Google Scholar
  20. 20.
    Nascimento, L.F., Martins, R.F., Silva, R.F., Serra, O.A.: Catalytic combustion of soot over ceria-zinc mixed oxides catalysts supported onto cordierite. J. Environ. Sci. 26(3), 694–701 (2014)Google Scholar
  21. 21.
    Venkataswamy, P., Devaiah, D., Mukherjee, D., Vithal, M., Reddy, B.M.: ZnO-nanoparticles decorated on CeO2 nanorods: an efficient catalyst for CO oxidation. Catal. Green Chem. Eng. 1(4), 293–306 (2018)Google Scholar
  22. 22.
    Lin, F., Delmelle, R., Vinodkumar, T., Reddy, B.M., Wokaun, A., Alxneit, I.: Correlation between the structural characteristics, oxygen storage capacities and catalytic activities of dual-phase Zn-modified ceria nanocrystals. Catal. Sci. Technol. 5(7), 3556–3567 (2015)Google Scholar
  23. 23.
    Poreddy, R., Engelbrekt, C., Riisager, A.: Copper oxide as efficient catalyst for oxidative dehydrogenation of alcohols with air. Catal. Sci. Technol. 5(4), 2467–2477 (2015)Google Scholar
  24. 24.
    Sun, S., Mao, D., Yu, J., Yang, Z., Lu, G., Ma, Z.: Low-temperature CO oxidation on CuO/CeO2 catalysts: the significant effect of copper precursor and calcination temperature. Catal. Sci. Technol. 5(6), 3166–3181 (2015)Google Scholar
  25. 25.
    Zhao, F., Li, S., Wu, X., Yue, R., Li, W., Zha, X., Deng, Y., Chen, Y.: Catalytic behaviour of flame-made CuO-CeO2 nanocatalysts in efficient CO oxidation. Catalysts. 9(3), 256 (2019)Google Scholar
  26. 26.
    Tran, T.H., Nguyen, V.T.: Copper oxide nanomaterials prepared by solution methods, some properties, and potential applications: a brief review. Int. Sch. Res. Not. 2014, 14 (2014)Google Scholar
  27. 27.
    Zhu, H., Xu, J., Yichuan, Y., Wang, Z., Gao, Y., Liu, W., Yin, H.: Catalytic oxidation of soot on mesoporous ceria-based mixed oxides with cetyltrimethyl ammonium bromide (CTAB)-assisted synthesis. J. Colloid Interface Sci. 508, 1–13 (2017)Google Scholar
  28. 28.
    Atribak, I., Azambre, B., Bueno López, A., García-García, A.: Effect of NOx adsorption/desorption over ceria-zirconia catalysts on the catalytic combustion of model soot. Appl. Catal. B Environ. 92(1), 126–137 (2009)Google Scholar
  29. 29.
    Neeft, J.P.A., Makkee, M., Moulijn, J.A.: Catalysts for the oxidation of soot from diesel exhaust gases . An exploratory study. IAppl. Catal. B Environ. 8(1), 57–78 (1996)Google Scholar
  30. 30.
    Neeft, J.P.A., van Pruissen, O.P., Makkee, M., Moulijn, J.A.: Catalysts for the oxidation of soot from diesel exhaust gases II. Contact between soot and catalyst under practical conditions. Appl. Catal. B Environ. 12(1), 21–31 (1997)Google Scholar
  31. 31.
    Li, Y., Cai, Y., Xing, X., Chen, N., Deng, D., Wang, Y.: Catalytic activity for CO oxidation of Cu–CeO2 composite nanoparticles synthesized by a hydrothermal method. Anal. Methods. 7(7), 3238–3245 (2015)Google Scholar
  32. 32.
    Khan, M.F., Ansari, A.H., Hameedullah, M., Ahmad, E., Husain, F.M., Zia, Q., Baig, U., Zaheer, M.R., Alam, M.M., Khan, A.M., AlOthman, Z.A., Ahmad, I., Ashraf, G.M., Aliev, G.: Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: potential role as nano-antibiotics. Sci. Rep. 6(1), 27689–27701 (2016)Google Scholar
  33. 33.
    Tighe, C.J., Cabrera, R.Q., Gruar, R.I., Darr, J.A.: Scale up production of nanoparticles: continuous supercritical water synthesis of Ce–Zn oxides. Ind. Eng. Chem. Res. 52(16), 5522–5528 (2013)Google Scholar
  34. 34.
    Yang, S., Wang, J., Chai, W., Zhu, J., Men, Y.: Enhanced soot oxidation activity over CuO/CeO2 mesoporous nanosheets. Catal. Sci. Technol. 9(7), 1699–1709 (2019)Google Scholar
  35. 35.
    Yang, S., Zhou, F., Liu, Y., Zhang, L., Chen, Y., Wang, H., Tian, Y., Zhang, C., Liu, D.: Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming. Int. J. Hydrog. Energy. 44(14), 7252–7261 (2019)Google Scholar
  36. 36.
    Jampaiah, D., Velisoju, V.K., Devaiah, D., Singh, M., Mayes, E.L.H., Coyle, V.E., Reddy, B.M., Bansal, V., Bhargava, S.K.: Flower-like Mn3O4/CeO2 microspheres as an efficient catalyst for diesel soot and CO oxidation: synergistic effects for enhanced catalytic performance. Appl. Surf. Sci. 473, 209–221 (2019)Google Scholar
  37. 37.
    Thirupathi, B., Arpad, S., Smirniotis, P.G.: Ce-based catalysts for the selective catalytic reduction of NOx in the presence of excess oxygen and simulated diesel engine exhaust conditions. Ind. Eng. Chem. Res. 56, 5483–5494 (2017)Google Scholar
  38. 38.
    Li, W., Hu, Y., Jiang, H., Jiang, N., Bi, W., Li, C.: Litchi-peel-like hierarchical hollow copper-ceria microspheres: aerosol-assisted synthesis and high activity and stability for catalytic CO oxidation. Nanoscale. 10(48), 22775–22786 (2018)Google Scholar
  39. 39.
    Zhan, W., Yang, S., Zhang, P., Guo, Y., Lu, G., Chisholm, M.F., Dai, S.: Incorporating rich mesoporosity into a ceria-based catalyst via mechanochemistry. Chem. Mater. 29(17), 7323–7329 (2017)Google Scholar
  40. 40.
    Lu, B., Li, Z., Kawamoto, K.: Synthesis of mesoporous ceria without template. Mater. Res. Bull. 48(7), 2504–2510 (2013)Google Scholar
  41. 41.
    Papavasiliou, J., Rawski, M., Vakros, J., Avgouropoulos, G.: A novel post-synthesis modification of CuO-CeO2 catalysts: effect on their activity for selective CO oxidation. ChemCatChem. 10(9), 2096–2106 (2018)Google Scholar
  42. 42.
    Sun, S., Mao, D., Yu, J.: Enhanced CO oxidation activity of CuO/CeO2 catalyst prepared by surfactant-assisted impregnation method. J. Rare Earths. 33(12), 1268–1274 (2015)Google Scholar
  43. 43.
    Du, L., Wang, W., Yan, H., Wang, X., Jin, Z., Song, Q., Si, R., Jia, C.: Copper-ceria sheets catalysts: effect of copper species on catalytic activity in CO oxidation reaction. J. Rare Earths. 35(12), 1186–1196 (2017)Google Scholar
  44. 44.
    Davó-Quiñonero, A., Navlani-García, M., Lozano-Castelló, D., Bueno-López, A., Anderson, J.A.: Role of hydroxyl groups in the preferential oxidation of CO over copper oxide–cerium oxide catalysts. ACS Catal. 6(3), 1723–1731 (2016)Google Scholar
  45. 45.
    Qi, L., Yu, Q., Dai, Y., Tang, C., Liu, L., Zhang, H., Gao, F., Dong, L., Chen, Y.: Influence of cerium precursors on the structure and reducibility of mesoporous CuO-CeO2 catalysts for CO oxidation. Appl. Catal. B Environ. 119-120, 308–320 (2012)Google Scholar
  46. 46.
    Li, J., Han, Y., Zhu, Y., Zhou, R.: Purification of hydrogen from carbon monoxide for fuel cell application over modified mesoporous CuO–CeO2 catalysts. Appl. Catal. B Environ. 108-109, 72–80 (2011)Google Scholar
  47. 47.
    Ren, Z., Peng, F., Li, J., Liang, X., Chen, B.: Morphology-dependent properties of cu/CeO2 catalysts for the water-gas shift reaction. Catalysts. 7(2), 48 (2017)Google Scholar
  48. 48.
    Liakakou, E.T., Isaacs, M.A., Wilson, K., Lee, A.F., Heracleous, E.: On the Mn promoted synthesis of higher alcohols over Cu derived ternary catalysts. Catal. Sci. Technol. 7(4), 988–999 (2017)Google Scholar
  49. 49.
    Andana, T., Piumetti, M., Bensaid, S., Veyre, L., Thieuleux, C., Russo, N., Fino, D., Quadrelli, E.A., Pirone, R.: CuO nanoparticles supported by ceria for NOx-assisted soot oxidation: insight into catalytic activity and sintering. Appl. Catal. B Environ. 216, 41–58 (2017)Google Scholar
  50. 50.
    Liu, L., Yao, Z., Deng, Y., Gao, F., Liu, B., Dong, L.: Morphology and crystal-plane effects of nanoscale ceria on the activity of CuO/CeO2 for NO reduction by CO. ChemCatChem. 3(6), 978–989 (2011)Google Scholar
  51. 51.
    Kuhn, J.N., Ozkan, U.S.: Surface properties of Sr- and Co-doped LaFeO3. J. Catal. 253(1), 200–211 (2008)Google Scholar
  52. 52.
    Govinda Rao, B., Jampaiah, D., Venkataswamy, P., Reddy, B.M.: Enhanced catalytic performance of manganese and cobalt Co–doped CeO2 catalysts for diesel soot oxidation. ChemSelect. 1(21), 6681–6691 (2016)Google Scholar
  53. 53.
    Thirupathi, B., Ettireddy, P.R., Arpad, S., Liu, Y., Vorontsov, A., McDonald, C.A., Smirniotis, P.G.: Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions. J. Catal. 325, 145–155 (2015)Google Scholar
  54. 54.
    Zhou, C., Xu, L., Song, J., Xing, R., Xu, S., Liu, D., Song, H.: Ultrasensitive non-enzymatic glucose sensor based on three-dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning. Sci. Rep. 4, 7382 (2014)Google Scholar
  55. 55.
    Laguna, O.H., Centeno, M.A., Romero-Sarria, F., Odriozola, J.A.: Oxidation of CO over gold supported on Zn-modified ceria catalysts. Catal. Today. 172, 118–123 (2011)Google Scholar
  56. 56.
    Thirupathi, B., Pappas, D.K., Smirniotis, P.G.: Metal oxide-confined interweaved titania nanotubes M/TNT (M = Mn, Cu, Ce, Fe, V, Cr, and Co) for the selective catalytic reduction of NOx in the presence of excess oxygen. J. Catal. 365, 320–333 (2018)Google Scholar
  57. 57.
    Yang, F., Wei, J., Liu, W., Guo, J., Yang, Y.: Copper doped ceria nanospheres: surface defects promoted catalytic activity and a versatile approach. J. Mater. Chem. A. 2(16), 5662–5667 (2014)Google Scholar
  58. 58.
    Wang, X., Liu, D., Li, J., Zhen, J., Zhang, H.: Clean synthesis of Cu2O@CeO2 core@shell nanocubes with highly active interface. Npg Asia Mater. 7(1), e158–e165 (2015)Google Scholar
  59. 59.
    Miceli, P., Bensaid, S., Russo, N., Fino, D.: CeO2-based catalysts with engineered morphologies for soot oxidation to enhance soot-catalyst contact. Nanoscale Res. Lett. 9(1), 254 (2014)Google Scholar
  60. 60.
    Tronconi, E., Nova, I., Marchitti, F., Koltsakis, G., Karamitros, D., Maletic, B., Markert, N., Chatterjee, D., Hehle, M.: Interaction of NOx reduction and soot oxidation in a DPF with Cu-zeolite SCR coating. Emission Control Sci. Technol. 1(2), 134–151 (2015)Google Scholar
  61. 61.
    Bagheri, M., Baar, R.: Simultaneous application of exhaust gas recirculation and non-constant injection rates to reduce NOx and soot emissions in diesel engines. Emission Control Sci. Technol. 4(1), 4–14 (2018)Google Scholar
  62. 62.
    Gao, Y., Wu, X., Liu, S., Weng, D., Ran, R.: Effect of water vapor on sulfur poisoning of MnOx–CeO2/Al2O3 catalyst for diesel soot oxidation. RSC Adv. 6(62), 57033–57040 (2016)Google Scholar
  63. 63.
    Liu, S., Wu, X., Weng, D., Ran, R.: Ceria-based catalysts for soot oxidation: a review. J. Rare Earths. 33(6), 567–590 (2015)Google Scholar
  64. 64.
    Bueno-López, A.: Diesel soot combustion ceria catalysts. Appl. Catal. B Environ. 146, 1–11 (2014)Google Scholar
  65. 65.
    Deng, X., Li, M., Zhang, J., Hu, X., Zheng, J., Zhang, N., Chen, B.H.: Constructing nano-structure on silver/ceria-zirconia towards highly active and stable catalyst for soot oxidation. Chem. Eng. J. 313, 544–555 (2017)Google Scholar
  66. 66.
    Lin, F., Wu, X., Weng, D.: Effect of barium loading on CuOx–CeO2 catalysts: NOx storage capacity, NO oxidation ability and soot oxidation activity. Catal. Today. 175, 124–132 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryOsmania UniversityHyderabadIndia
  2. 2.Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of ScienceRMIT UniversityMelbourneAustralia
  3. 3.Catalysis and Fine Chemicals DepartmentCSIR-Indian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations