Advertisement

Synthesis and Study of Bimetallic Pd-Rh System Supported on Zirconia-Doped Alumina as a Component of Three-way Catalysts

  • Aleksey A. VedyaginEmail author
  • Roman M. Kenzhin
  • Mikhail Yu. Tashlanov
  • Vladimir O. Stoyanovskii
  • Pavel E. Plyusnin
  • Yury V. Shubin
  • Ilya V. Mishakov
  • Alexander V. Kalinkin
  • Mikhail Yu. Smirnov
  • Valerii I. Bukhtiyarov
Special Issue: In Recognition of Professor Wolfgang Grünert's Contributions to the Science and Fundamentals of Selective Catalytic Reduction of NOx
  • 16 Downloads

Abstract

The present work is aimed at preparation and detailed characterization of the Pd-Rh/γ-Al2O3-ZrO2 composition used as a component of three-way catalysts. Physicochemical properties, such as specific surface area, morphology, secondary structure, dispersity and chemical state of active components, and thermal stability along with catalytic activity were studied within this research. Textural parameters of the samples were examined using low-temperature nitrogen adsorption. Analysis of the morphology and secondary structure was performed by means of electron microscopy. Concentration of metals located on the surface and accessible for the reagents was estimated using test reaction of ethane hydrogenolysis. Method of X-ray photoelectron spectroscopy was applied to investigate the chemical state of active components. Catalytic performance and thermal stability of the samples were tested in a prompt thermal aging regime using CO oxidation reaction as a criterion for in situ characterization of the catalyst state. It was found that both these characteristics strongly depend on the nature and composition of the precursors used.

Keywords

Three-way catalysts Pd-Rh nanoalloys Zr-doped alumina Thermal stability XPS 

Notes

Funding Information

The study was financially supported by the Ministry of Education and Science of the Russian Federation within the framework of subsidizing agreement of October 23, 2017 (No. 14.581.21.0028, unique agreement identifier RFMEFI58117X0028) of the Federal Target Program “Research and development in priority directions of the progress of the scientific and technological complex of Russia for the years 2014–2020.”

Compliance with Ethical Standards

The authors declare that they have no competing interests.

References

  1. 1.
    Heck, R.M., Farrauto, R.J., Gulati, S.T.: Catalytic Air Pollution Control. (2009)Google Scholar
  2. 2.
    Twigg, M.V.: Catalytic control of emissions from cars. Catal. Today. 163(1), 33–41 (2011).  https://doi.org/10.1016/j.cattod.2010.12.044 Google Scholar
  3. 3.
    Zheng, Q., Farrauto, R., Deeba, M.: Part II: oxidative thermal aging of Pd/Al2O3 and Pd/CexOy-ZrO2 in automotive three way catalysts: the effects of fuel shutoff and attempted fuel rich regeneration. Catalysts. 5(4), 1797–1814 (2015).  https://doi.org/10.3390/catal5041797 Google Scholar
  4. 4.
    Shelef, M., Graham, G.W.: Why rhodium in automotive three-way catalysts? Catal. Rev. 36(3), 433–457 (2006).  https://doi.org/10.1080/01614949408009468 Google Scholar
  5. 5.
    Hangas, J., Chen, A.E.: Comparative analytical study of two Pt–Rh three-way catalysts. Catal. Lett. 108(1–2), 103–111 (2006).  https://doi.org/10.1007/s10562-006-0016-z Google Scholar
  6. 6.
    Zheng, Q., Farrauto, R., Deeba, M., Valsamakis, I.: Part I: a comparative thermal aging study on the regenerability of Rh/Al2O3 and Rh/CexOy-ZrO2 as model catalysts for automotive three way catalysts. Catalysts. 5(4), 1770–1796 (2015).  https://doi.org/10.3390/catal5041770 Google Scholar
  7. 7.
    Baidya, T.: Synthesis, structure and redox catalytic properties of Pt and Pd ion substituted Ce1-xMxO2(M= Ti, Zr & Hf) oxygen storage capacity nano-materials. Indian Institute of Science (2007)Google Scholar
  8. 8.
    Mei, D., Kwak, J.H., Hu, J., Cho, S.J., Szanyi, J., Allard, L.F., Peden, C.H.F.: Unique role of anchoring penta-coordinated Al3+ sites in the sintering of γ-Al2O3-supported Pt catalysts. The Journal of Physical Chemistry Letters. 1(18), 2688–2691 (2010).  https://doi.org/10.1021/jz101073p Google Scholar
  9. 9.
    Busca, G., Finocchio, E., Escribano, V.S.: Infrared studies of CO oxidation by oxygen and by water over Pt/Al2O3 and Pd/Al2O3 catalysts. Appl. Catal. B Environ. 113-114, 172–179 (2012).  https://doi.org/10.1016/j.apcatb.2011.11.035 Google Scholar
  10. 10.
    Shan, S., Petkov, V., Prasai, B., Wu, J., Joseph, P., Skeete, Z., Kim, E., Mott, D., Malis, O., Luo, J., Zhong, C.-J.: Catalytic activity of bimetallic catalysts highly sensitive to the atomic composition and phase structure at the nanoscale. Nanoscale. 7(45), 18936–18948 (2015).  https://doi.org/10.1039/c5nr04535e Google Scholar
  11. 11.
    De Clercq, A., Margeat, O., Sitja, G., Henry, C.R., Giorgio, S.: Core–shell Pd–Pt nanocubes for the CO oxidation. J. Catal. 336, 33–40 (2016).  https://doi.org/10.1016/j.jcat.2016.01.005 Google Scholar
  12. 12.
    Kobayashi, H., Kusada, K., Kitagawa, H.: Creation of novel solid-solution alloy nanoparticles on the basis of density-of-states engineering by interelement fusion. Acc. Chem. Res. 48(6), 1551–1559 (2015).  https://doi.org/10.1021/ar500413e Google Scholar
  13. 13.
    Fernandes, V.R., Bossche, M.V.D., Knudsen, J., Farstad, M.H., Gustafson, J., Venvik, H.J., Grönbeck, H., Borg, A.: Reversed hysteresis during CO oxidation over Pd75Ag25(100). ACS Catalysis. 6(7), 4154–4161 (2016).  https://doi.org/10.1021/acscatal.6b00658 Google Scholar
  14. 14.
    Cai, F., Yang, L., Shan, S., Mott, D., Chen, B., Luo, J., Zhong, C.-J.: Preparation of PdCu alloy nanocatalysts for nitrate hydrogenation and carbon monoxide oxidation. Catalysts. 6(7), (2016).  https://doi.org/10.3390/catal6070096
  15. 15.
    Shang, H., Wang, Y., Cui, Y., Fang, R., Hu, W., Gong, M., Chen, Y.: Catalytic performance of Pt–Rh/CeZrYLa+LaAl with stoichiometric natural gas vehicles emissions. Chin. J. Catal. 36(3), 290–298 (2015).  https://doi.org/10.1016/s1872-2067(14)60270-9 Google Scholar
  16. 16.
    Plyusnin, P.E., Slavinskaya, E.M., Kenzhin, R.M., Kirilovich, A.K., Makotchenko, E.V., Stonkus, O.A., Shubin, Y.V., Vedyagin, A.A.: Synthesis of bimetallic AuPt/CeO2 catalysts and their comparative study in CO oxidation under different reaction conditions. React. Kinet. Mech. Catal. 127(1), 69–83 (2019).  https://doi.org/10.1007/s11144-019-01545-5 Google Scholar
  17. 17.
    Shubin, Y.V., Vedyagin, A.A., Plyusnin, P.E., Kirilovich, A.K., Kenzhin, R.M., Stoyanovskii, V.O., Korenev, S.V.: The peculiarities of Au–Pt alloy nanoparticles formation during the decomposition of double complex salts. J. Alloys Compd. 740, 935–940 (2018).  https://doi.org/10.1016/j.jallcom.2017.12.127 Google Scholar
  18. 18.
    Hilli, Y., Kinnunen, N.M., Suvanto, M., Savimäki, A., Kallinen, K., Pakkanen, T.A.: Preparation and characterization of Pd–Ni bimetallic catalysts for CO and C3H6 oxidation under stoichiometric conditions. Appl. Catal. A Gen. 497, 85–95 (2015).  https://doi.org/10.1016/j.apcata.2015.03.004 Google Scholar
  19. 19.
    Shipitcyna, A., Kinnunen, N.M., Hilli, Y., Suvanto, M., Pakkanen, T.A.: Characterization and activity of Pd–Ir catalysts in CO and C3H6 oxidation under stoichiometric conditions. Top. Catal. 59(13–14), 1097–1103 (2016).  https://doi.org/10.1007/s11244-016-0628-5 Google Scholar
  20. 20.
    Vedyagin, A.A., Volodin, A.M., Kenzhin, R.M., Stoyanovskii, V.O., Shubin, Y.V., Plyusnin, P.E., Mishakov, I.V.: Effect of metal-metal and metal-support interaction on activity and stability of Pd-Rh/alumina in CO oxidation. Catal. Today. 293-294, 73–81 (2017).  https://doi.org/10.1016/j.cattod.2016.10.010 Google Scholar
  21. 21.
    Vedyagin, A.A., Stoyanovskii, V.O., Plyusnin, P.E., Shubin, Y.V., Slavinskaya, E.M., Mishakov, I.V.: Effect of metal ratio in alumina-supported Pd-Rh nanoalloys on its performance in three way catalysis. J. Alloys Compd. 749, 155–162 (2018).  https://doi.org/10.1016/j.jallcom.2018.03.250 Google Scholar
  22. 22.
    Wu, X., Xu, L., Weng, D.: The thermal stability and catalytic performance of Ce-Zr promoted Rh-Pd/γ-Al2O3 automotive catalysts. Appl. Surf. Sci. 221(1–4), 375–383 (2004).  https://doi.org/10.1016/s0169-4332(03)00938-3 Google Scholar
  23. 23.
    He, X., Sun, J., Huan, Y., Hu, J., Yang, D.: Influence of Al2O3/CeZrAl composition on the catalytic behavior of Pd/Rh catalyst. J. Rare Earths. 28(1), 59–63 (2010).  https://doi.org/10.1016/s1002-0721(09)60051-x Google Scholar
  24. 24.
    Bounechada, D., Groppi, G., Forzatti, P., Kallinen, K., Kinnunen, T.: Enhanced methane conversion under periodic operation over a Pd/Rh based TWC in the exhausts from NGVs. Top. Catal. 56(1–8), 372–377 (2013).  https://doi.org/10.1007/s11244-013-9982-8 Google Scholar
  25. 25.
    Kang, S.B., Han, S.J., Nam, I.-S., Cho, B.K., Kim, C.H., Oh, S.H.: Detailed reaction kinetics for double-layered Pd/Rh bimetallic TWC monolith catalyst. Chem. Eng. J. 241, 273–287 (2014).  https://doi.org/10.1016/j.cej.2013.12.039 Google Scholar
  26. 26.
    Oh, S.H., Triplett, T.: Reaction pathways and mechanism for ammonia formation and removal over palladium-based three-way catalysts: multiple roles of CO. Catal. Today. 231, 22–32 (2014).  https://doi.org/10.1016/j.cattod.2013.11.048 Google Scholar
  27. 27.
    Renzas, J.R., Huang, W., Zhang, Y., Grass, M.E., Hoang, D.T., Alayoglu, S., Butcher, D.R., Tao, F., Liu, Z., Somorjai, G.A.: Rh1−xPdxnanoparticle composition dependence in CO oxidation by oxygen: catalytic activity enhancement in bimetallic systems. Phys. Chem. Chem. Phys. 13(7), 2556–2562 (2011).  https://doi.org/10.1039/c0cp01858a Google Scholar
  28. 28.
    Renzas, J.R., Huang, W., Zhang, Y., Grass, M.E., Somorjai, G.A.: Rh1−x Pd x nanoparticle composition dependence in CO oxidation by NO. Catal. Lett. 141(2), 235–241 (2010).  https://doi.org/10.1007/s10562-010-0462-5 Google Scholar
  29. 29.
    Stoyanovskii, V.O., Vedyagin, A.A., Aleshina, G.I., Volodin, A.M., Noskov, A.S.: Characterization of Rh/Al2O3 catalysts after calcination at high temperatures under oxidizing conditions by luminescence spectroscopy and catalytic hydrogenolysis. Appl. Catal. B Environ. 90(1–2), 141–146 (2009).  https://doi.org/10.1016/j.apcatb.2009.03.003 Google Scholar
  30. 30.
    Stoyanovskii, V.O., Vedyagin, A.A., Volodin, A.M., Kenzhin, R.M., Shubin, Y.V., Plyusnin, P.E., Mishakov, I.V.: Peculiarity of Rh bulk diffusion in La-doped alumina and its impact on CO oxidation over Rh/Al 2 O 3. Catal. Commun. 97, 18–22 (2017).  https://doi.org/10.1016/j.catcom.2017.04.013 Google Scholar
  31. 31.
    Stoyanovskii, V.O., Vedyagin, A.A., Volodin, A.M., Kenzhin, R.M., Bespalko, Y.N., Plyusnin, P.E., Shubin, Y.V.: Optical spectroscopy of Rh3+ ions in the lanthanum-aluminum oxide systems. J. Lumin. 204, 609–617 (2018).  https://doi.org/10.1016/j.jlumin.2018.08.070 Google Scholar
  32. 32.
    Stoyanovskii, V.O., Vedyagin, A.A., Volodin, A.M., Kenzhin, R.M., Slavinskaya, E.M., Plyusnin, P.E., Shubin, Y.V.: Optical spectroscopy methods in the estimation of the thermal stability of bimetallic Pd–Rh/Al2O3 three-way catalysts. Top. Catal. 62(1–4), 296–304 (2018).  https://doi.org/10.1007/s11244-018-1112-1 Google Scholar
  33. 33.
    Vedyagin, A.A., Gavrilov, M.S., Volodin, A.M., Stoyanovskii, V.O., Slavinskaya, E.M., Mishakov, I.V., Shubin, Y.V.: Catalytic purification of exhaust gases over Pd–Rh alloy catalysts. Top. Catal. 56(11), 1008–1014 (2013).  https://doi.org/10.1007/s11244-013-0064-8 Google Scholar
  34. 34.
    Vedyagin, A.A., Volodin, A.M., Stoyanovskii, V.O., Kenzhin, R.M., Slavinskaya, E.M., Mishakov, I.V., Plyusnin, P.E., Shubin, Y.V.: Stabilization of active sites in alloyed Pd–Rh catalysts on γ-Al2O3 support. Catal. Today. 238, 80–86 (2014).  https://doi.org/10.1016/j.cattod.2014.02.056 Google Scholar
  35. 35.
    Vedyagin, A.A., Volodin, A.M., Stoyanovskii, V.O., Kenzhin, R.M., Plyusnin, P.E., Shubin, Y.V., Mishakov, I.V.: Effect of alumina phase transformation on stability of low-loaded Pd-Rh catalysts for CO oxidation. Top. Catal. 60(1–2), 152–161 (2016).  https://doi.org/10.1007/s11244-016-0726-4 Google Scholar
  36. 36.
    Vedyagin, A.A., Plyusnin, P.E., Rybinskaya, A.A., Shubin, Y.V., Mishakov, I.V., Korenev, S.V.: Synthesis and study of Pd-Rh alloy nanoparticles and alumina-supported low-content Pd-Rh catalysts for CO oxidation. Mater. Res. Bull. 102, 196–202 (2018).  https://doi.org/10.1016/j.materresbull.2018.02.038 Google Scholar
  37. 37.
    Vedyagin, A.A., Shubin, Y.V., Kenzhin, R.M., Plyusnin, P.E., Stoyanovskii, V.O., Volodin, A.M.: Prospect of using nanoalloys of partly miscible rhodium and palladium in three-way catalysis. Top. Catal. 62(1–4), 305–314 (2018).  https://doi.org/10.1007/s11244-018-1093-0 Google Scholar
  38. 38.
    Vedyagin, A.A., Stoyanovskii, V.O., Kenzhin, R.M., Slavinskaya, E.M., Plyusnin, P.E., Shubin, Y.V.: Purification of gasoline exhaust gases using bimetallic Pd–Rh/δ-Al2O3 catalysts. React. Kinet. Mech. Catal. 127(1), 137–148 (2019).  https://doi.org/10.1007/s11144-019-01573-1 Google Scholar
  39. 39.
    Ozawa, M., Okouchi, T., Haneda, M.: Three way catalytic activity of thermally degenerated Pt/Al2O3 and Pt/CeO2–ZrO2 modified Al2O3 model catalysts. Catal. Today. 242, 329–337 (2015).  https://doi.org/10.1016/j.cattod.2014.06.013 Google Scholar
  40. 40.
    Papavasiliou, A., Tsetsekou, A., Matsouka, V., Konsolakis, M., Yentekakis, I.V.: An investigation of the role of Zr and La dopants into Ce1−x−yZrxLayOδ enriched γ-Al2O3 TWC washcoats. Appl. Catal. A Gen. 382(1), 73–84 (2010).  https://doi.org/10.1016/j.apcata.2010.04.025 Google Scholar
  41. 41.
    Haneda, M., Tomida, Y., Sawada, H., Hattori, M.: Effect of rare earth additives on the catalytic performance of Rh/ZrO2 three-way catalyst. Top. Catal. 59(10–12), 1059–1064 (2016).  https://doi.org/10.1007/s11244-016-0590-2 Google Scholar
  42. 42.
    Haneda, M., Tomida, Y., Takahashi, T., Azuma, Y., Fujimoto, T.: Three-way catalytic performance and change in the valence state of Rh in Y- and Pr-doped Rh/ZrO2 under lean/rich perturbation conditions. Catal. Commun. 90, 1–4 (2017).  https://doi.org/10.1016/j.catcom.2016.11.009 Google Scholar
  43. 43.
    Vedyagin, A., Volodin, A., Kenzhin, R., Chesnokov, V., Mishakov, I.: CO oxidation over Pd/ZrO2 catalysts: role of support’s donor sites. Molecules. 21(10), 1289 (2016).  https://doi.org/10.3390/molecules21101289 Google Scholar
  44. 44.
    Kostin, G.A., Plyusnin, P.E., Filatov, E.Y., Kuratieva, N.V., Vedyagin, A.A., Kal’nyi, D.B.: Double complex salts [PdL4][RuNO(NO2)4OH] (L = NH3, Py) synthesis, structure and preparation of bimetallic metastable solid solution Pd0.5Ru0.5. Polyhedron. 159, 217–225 (2019).  https://doi.org/10.1016/j.poly.2018.11.065 Google Scholar
  45. 45.
    Venediktov, A.B., Korenev, S.V., Khranenko, S.P., Tkachev, S.V., Plyusnin, P.E., Mamonov, S.N., Ivanova, L.V., Vostrikov, V.A.: Properties of nitric acid palladium solutions with a high metal concentration. Russ. J. Appl. Chem. 80(5), 695–704 (2007).  https://doi.org/10.1134/s1070427207050023 Google Scholar
  46. 46.
    Chernyaev, I.I.: Synthesis of Complex Compounds of Platinum Group Metals. Nauka, Moscow (1964)Google Scholar
  47. 47.
    Fedorov, I.A.: Rhodium. Nauka, Moscow (1966)Google Scholar
  48. 48.
    Rybinskaya, A.A., Plyusnin, P.E., Bykova, E.A., Gromilov, S.A., Shubin, Y.V., Korenev, S.V.: Double complex salts [Pd(NH3)4]3[Rh(NO2)6]2, [Pd(NH3)4]3[Rh(NO2)6]2·H2O as promising precursors to prepare Pd-Rh nanoalloys. J. Struct. Chem. 53(3), 527–533 (2012).  https://doi.org/10.1134/s002247661203016x Google Scholar
  49. 49.
    Nefedov, V.I.: X-Ray Photoelectron Spectroscopy of Chemical Compounds: Handbook. Khimiya, Moscow (1984)Google Scholar
  50. 50.
    Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D.: Handbook of X-Ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, Eden Prairie (1992)Google Scholar
  51. 51.
    Vedyagin, A.A., Volodin, A.M., Stoyanovskii, V.O., Mishakov, I.V., Medvedev, D.A., Noskov, A.S.: Characterization of active sites of Pd/Al2O3 model catalysts with low Pd content by luminescence, EPR and ethane hydrogenolysis. Applied Catalysis B: Environmental. 103(3–4), 397–403 (2011).  https://doi.org/10.1016/j.apcatb.2011.02.002 Google Scholar
  52. 52.
    Behafarid, F., Roldan Cuenya, B.: Towards the understanding of sintering phenomena at the nanoscale: geometric and environmental effects. Top. Catal. 56(15–17), 1542–1559 (2013).  https://doi.org/10.1007/s11244-013-0149-4 Google Scholar
  53. 53.
    Morgan, K., Goguet, A., Hardacre, C.: Metal redispersion strategies for recycling of supported metal catalysts: a perspective. ACS Catal. 5(6), 3430–3445 (2015).  https://doi.org/10.1021/acscatal.5b00535 Google Scholar
  54. 54.
    Lupescu, J.A., Schwank, J.W., Dahlberg, K.A., Seo, C.Y., Fisher, G.B., Peczonczyk, S.L., Rhodes, K., Jagner, M.J., Haack, L.P.: Pd model catalysts: effect of aging environment and lean redispersion. Appl. Catal. B Environ. 183, 343–360 (2016).  https://doi.org/10.1016/j.apcatb.2015.10.018 Google Scholar
  55. 55.
    He, J.J., Wang, C.X., Zheng, T.T., Zhao, Y.K.: Thermally induced deactivation and the corresponding strategies for improving durability in automotive three-way catalysts. Johnson Matthey Technology Review. 60(3), 196–203 (2016).  https://doi.org/10.1595/205651316x691960 Google Scholar
  56. 56.
    Seo, C.Y., Chen, X.Y., Sun, K., Allard, L.F., Fisher, G.B., Schwank, J.W.: Palladium redispersion at high temperature within the Pd@SiO2 core@shell structure. Catal. Commun. 108, 73–76 (2018).  https://doi.org/10.1016/j.catcom.2018.01.027 Google Scholar
  57. 57.
    Sinfelt, J., Yates, D.J.C.: Catalytic hydrogenolysis of ethane over the noble metals of group VIII. J. Catal. 8(1), 82–90 (1967).  https://doi.org/10.1016/0021-9517(67)90284-9 Google Scholar
  58. 58.
    Yates, D., Sinfelt, J.H.: The catalytic activity of rhodium in relation to its state of dispersion. J. Catal. 8(4), 348–358 (1967).  https://doi.org/10.1016/0021-9517(67)90331-4 Google Scholar
  59. 59.
    Sinfelt, J.: Kinetics of ethane hydrogenolysis. J. Catal. 27(3), 468–471 (1972).  https://doi.org/10.1016/0021-9517(72)90188-1 Google Scholar
  60. 60.
    Sinfelt, J.H.: Specificity in catalytic hydrogenolysis by metals. In. Advances in Catalysis, pp. 91–119. (1973)Google Scholar
  61. 61.
    Fernandes, D.M., Alcover Neto, A., Cardoso, M.J.B., Zotin, F.M.Z.: Commercial automotive catalysts: chemical, structural and catalytic evaluation, before and after aging. Catal. Today. 133-135, 574–581 (2008).  https://doi.org/10.1016/j.cattod.2007.12.064 Google Scholar
  62. 62.
    Kang, S.B., Han, S.J., Nam, S.B., Nam, I.-S., Cho, B.K., Kim, C.H., Oh, S.H.: Effect of aging atmosphere on thermal sintering of modern commercial TWCs. Top. Catal. 56(1–8), 298–305 (2013).  https://doi.org/10.1007/s11244-013-9970-z Google Scholar
  63. 63.
    Ramanathan, K., Oh, S.H.: Modeling and analysis of rapid catalyst aging cycles. Chem. Eng. Res. Des. 92(2), 350–361 (2014).  https://doi.org/10.1016/j.cherd.2013.06.020 Google Scholar
  64. 64.
    Chen, X., Cheng, Y., Seo, C.Y., Schwank, J.W., McCabe, R.W.: Aging, re-dispersion, and catalytic oxidation characteristics of model Pd/Al2O3 automotive three-way catalysts. Appl. Catal. B Environ. 163, 499–509 (2015).  https://doi.org/10.1016/j.apcatb.2014.08.018 Google Scholar
  65. 65.
    Alikin, E.A., Denisov, S.P., Vedyagin, A.A.: Partial regeneration of model TWC after high-temperature aging on engine bench. Top. Catal. 62(1–4), 324–330 (2018).  https://doi.org/10.1007/s11244-018-1114-z Google Scholar
  66. 66.
    Lupescu, J.A., Schwank, J.W., Fisher, G.B., Hangas, J., Peczonczyk, S.L., Paxton, W.A.: Pd model catalysts: effect of air pulse length during redox aging on Pd redispersion. Appl. Catal. B Environ. 223, 76–90 (2018).  https://doi.org/10.1016/j.apcatb.2017.07.055 Google Scholar
  67. 67.
    Peuckert, M.: XPS study on surface and bulk palladium oxide, its thermal stability, and a comparison with other noble metal oxides. J. Phys. Chem. 89(12), 2481–2486 (1985).  https://doi.org/10.1021/j100258a012 Google Scholar
  68. 68.
    Fleisch, T.H., Zajac, G.W., Schreiner, J.O., Mains, G.J.: An XPS study of the UV photoreduction of transition and noble metal oxides. Appl. Surf. Sci. 26(4), 488–497 (1986).  https://doi.org/10.1016/0169-4332(86)90120-0 Google Scholar
  69. 69.
    Fox, E.B., Lee, A.F., Wilson, K., Song, C.: In-situ XPS study on the reducibility of Pd-promoted cu/CeO2 catalysts for the oxygen-assisted water-gas-shift reaction. Top. Catal. 49(1–2), 89–96 (2008).  https://doi.org/10.1007/s11244-008-9063-6 Google Scholar
  70. 70.
    Luo, J.-Y., Meng, M., Xian, H., Tu, Y.-B., Li, X.-G., Ding, T.: The nanomorphology-controlled palladium-support interaction and the catalytic performance of Pd/CeO2 catalysts. Catal. Lett. 133(3–4), 328–333 (2009).  https://doi.org/10.1007/s10562-009-0194-6 Google Scholar
  71. 71.
    Devener, B.V., Anderson, S.L., Shimizu, T., Wang, H., Nabity, J., Engel, J., Yu, J., Wickham, D., Williams, S.: In situ generation of Pd/PdO nanoparticle methane combustion catalyst: correlation of particle surface chemistry with ignition. J. Phys. Chem. C. 113(48), 20632–20639 (2009).  https://doi.org/10.1021/jp904317y Google Scholar
  72. 72.
    Mason, M.G.: Electronic structure of supported small metal clusters. Phys. Rev. B. 27(2), 748–762 (1983).  https://doi.org/10.1103/PhysRevB.27.748 Google Scholar
  73. 73.
    Weng-Sieh, Z., Gronsky, R., Bell, A.T.: Microstructural evolution of γ-alumina-supported Rh upon aging in air. J. Catal. 170(1), 62–74 (1997).  https://doi.org/10.1006/jcat.1997.1738 Google Scholar
  74. 74.
    Suhonen, S., Valden, M., Hietikko, M., Laitinen, R., Savimäki, A., Härkönen, M.: Effect of Ce–Zr mixed oxides on the chemical state of Rh in alumina supported automotive exhaust catalysts studied by XPS and XRD. Appl. Catal. A Gen. 218(1–2), 151–160 (2001).  https://doi.org/10.1016/s0926-860x(01)00636-6 Google Scholar
  75. 75.
    Peuckert, M.: A comparison of thermally and electrochemically prepared oxidation adlayers on rhodium: chemical nature and thermal stability. Surf. Sci. 141(2–3), 500–514 (1984).  https://doi.org/10.1016/0039-6028(84)90145-6 Google Scholar
  76. 76.
    Burkhard, J., Schmidt, L.D.: Comparison of microstructures in oxidation and reduction: Rh and Ir particles on SiO2 and Al2O3*1. J. Catal. 116(1), 240–251 (1989).  https://doi.org/10.1016/0021-9517(89)90089-4 Google Scholar
  77. 77.
    Beck, D.D., DiMaggio, C.L., Fisher, G.B.: Surface enrichment of Pt10Rh90(111). Surf. Sci. 297(3), 303–311 (1993).  https://doi.org/10.1016/0039-6028(93)90219-a Google Scholar
  78. 78.
    Tolia, A.A., Smiley, R.J., Delgass, W.N., Takoudis, C.G., Weaver, M.J.: Surface oxidation of rhodium at ambient pressures as probed by surface-enhanced Raman and X-ray photoelectron spectroscopies. J. Catal. 150(1), 56–70 (1994).  https://doi.org/10.1006/jcat.1994.1322 Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aleksey A. Vedyagin
    • 1
    Email author
  • Roman M. Kenzhin
    • 1
  • Mikhail Yu. Tashlanov
    • 1
    • 2
  • Vladimir O. Stoyanovskii
    • 1
  • Pavel E. Plyusnin
    • 2
    • 3
  • Yury V. Shubin
    • 2
    • 3
  • Ilya V. Mishakov
    • 1
    • 2
  • Alexander V. Kalinkin
    • 1
  • Mikhail Yu. Smirnov
    • 1
  • Valerii I. Bukhtiyarov
    • 1
    • 2
  1. 1.Federal Scientific Center Boreskov Institute of Catalysis SB RASNovosibirskRussian Federation
  2. 2.National Research Novosibirsk State UniversityNovosibirskRussian Federation
  3. 3.Nikolaev Institute of Inorganic Chemistry SB RASNovosibirskRussian Federation

Personalised recommendations