Advertisement

TiO2 Coated-Asphalt Buton Photocatalyst for High-Performance Motor Vehicles Gas Emission Mitigation

  • Muhammad Zakir Muzakkar
  • Muhammad NurdinEmail author
  • Ima Ismail
  • Maulidiyah Maulidiyah
  • Dwiprayogo Wibowo
  • Ratna Ratna
  • Siti Khatijah Md Saad
  • Akrajas Ali UmarEmail author
Article
  • 4 Downloads

Abstract

Gas emission from motor vehicle has become the origin of many serious issues including health and air-quality, green house effect, and other environment issues. While motor vehicle manufacturers have set a particular standard of gas emission and motor vehicle aging, usage has contributed to the increase of hazardous gas emission from vehicles. Therefore, developing a special material that can adsorb the emitted gases should be continuously demonstrated. This paper reports the fabrication of a high-performance material, i.e., asphalt naturally found in Buton Island, Indonesia (asbuton), composited of anatase TiO2 (ATi), for application in gas emission reduction, such as carbon monoxide (CO), carbon dioxide (CO2), and other hydrocarbon gases (HC). ATi was prepared by coating the pre-extracted asbuton with anatase TiO2 sol-gel via a spray-coating technique and annealed at 120 °C for 3 h. We found that the CO, CO2, and HC gases can be effectively adsorbed by the ATi adsorbent as high as 600, 1500, and 760 ppm, respectively, for exposure time of only 90 s each. The gas adsorption on the ATi obeys Langmuir and Freundlich isotherms. The maximum gas adsorption capacity was found to be as high as 95,238 and 2348 ppm (for CO2 and HC, respectively). The availability of abundant –OH active ligand on Si–OH and Ti–OH and highly porous structure, as judged from the FTIR and SEM analysis results, is assumed as the key reason for the high adsorption capacity of the ATi. The ATi should find a potential application in motor vehicle gas emission and air pollutant mitigation.

Keywords

Asphalt Buton Asbuton-anatase TiO2 composite Photocatalyst Mitigation Motor vehicle gas emission 

Notes

Funding information

Financial support was from the DRPM-Ministry of Research, Technology and Higher Education, the Republic of Indonesia under the research grant no 056/SP2H/LT/DRPM/2018, and World Class Professor (WCP) visiting scientist program Skema B 2018 award no 123.47/D2.3/KP/2018.

Compliance with Ethical Standards

The authors declare that they have no any competing interests.

References

  1. 1.
    Woodcock, J., Edwards, P., Tonne, C., Armstrong, B.G., Ashiru, O., Banister, D., Beevers, S., Chalabi, Z., Chowdhury, Z., Cohen, A.: Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. Lancet. 374(9705), 1930–1943 (2009)Google Scholar
  2. 2.
    Morawska, L., Bofinger, N.D., Kocis, L., Nwankwoala, A.: Submicrometer and supermicrometer particles from diesel vehicle emissions. Environ. Sci. Technol. 32(14), 2033–2042 (1998)Google Scholar
  3. 3.
    Sato, S., Yu-u, Y., Yahiro, H., Mizuno, N., Iwamoto, M.: Cu-ZSM-5 zeolite as highly active catalyst for removal of nitrogen monoxide from emission of diesel engines. Appl. Catal. 70(1), L1–L5 (1991)Google Scholar
  4. 4.
    Siddiqui, M.N., Ali, M.F., Shirokoff, J.: Use of X-ray diffraction in assessing the aging pattern of asphalt fractions. Fuel. 81(1), 51–58 (2002)Google Scholar
  5. 5.
    Saha, D., Bao, Z., Jia, F., Deng, S.: Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A. Environ. Sci. Technol. 44(5), 1820–1826 (2010)Google Scholar
  6. 6.
    Adler, J.: Ceramic diesel particulate filters. Int. J. Appl. Ceram. Technol. 2(6), 429–439 (2005)Google Scholar
  7. 7.
    Chevallier, L., Bauer, A., Cavaliere, S., Hui, R., Rozière, J., Jones, D.J.: Mesoporous nanostructured Nb-doped titanium dioxide microsphere catalyst supports for PEM fuel cell electrodes. ACS Appl. Mater. Interfaces. 4(3), 1752–1759 (2012)Google Scholar
  8. 8.
    Ismagilov, Z., Kerzhentsev, M.: Catalytic fuel combustion—a way of reducing emission of nitrogen oxides. Catal. Rev.—Sci. Eng. 32(1-2), 51–103 (1990)Google Scholar
  9. 9.
    Chen, Y.-g., Tomishige, K., Yokoyama, K., Fujimoto, K.: Promoting effect of Pt, Pd and Rh noble metals to the Ni0. 03Mg0. 97O solid solution catalysts for the reforming of CH4 with CO2. Appl. Catal. A Gen. 165(1-2), 335–347 (1997)Google Scholar
  10. 10.
    Zhang, Q., Liu, Q., Ning, P., Liu, X., Xu, L., Song, Z., Duan, Y., Zhang, T.: Performance and kinetic study on Pd/OMS-2 catalyst for CO catalytic oxidation: effect of preparation method. Res. Chem. Intermed. 43(4), 2017–2032 (2017)Google Scholar
  11. 11.
    Liu, L., Song, Y., Fu, Z., Ye, Q., Cheng, S., Kang, T., Dai, H.: Effect of preparation method on the surface characteristics and activity of the Pd/OMS-2 catalysts for the oxidation of carbon monoxide, toluene, and ethyl acetate. Appl. Surf. Sci. 396, 599–608 (2017)Google Scholar
  12. 12.
    Johnsen, K., Ryu, H., Grace, J., Lim, C.: Sorption-enhanced steam reforming of methane in a fluidized bed reactor with dolomite as CO2-acceptor. Chem. Eng. Sci. 61(4), 1195–1202 (2006)Google Scholar
  13. 13.
    Kowsari, E., Abdpour, S.: Investigation performance of rod-like ZnO/CdO composites, synthesized in ionic liquid medium as photocatalytic for degradation of air pollutants (SO2 and NOX). Optik-International Journal for Light and Electron Optics. 127(23), 11567–11576 (2016)Google Scholar
  14. 14.
    Naydenov, A., Konova, P., Nikolov, P., Klingstedt, F., Kumar, N., Kovacheva, D., Stefanov, P., Stoyanova, R., Mehandjiev, D.: Decomposition of ozone on Ag/SiO2 catalyst for abatement of waste gases emissions. Catal. Today. 137(2-4), 471–474 (2008)Google Scholar
  15. 15.
    Patel, M.S.: Rapid and convenient laboratory method for extraction and subsequent spectrophotometric determination of bitumen content of bituminous sands. Anal. Chem. 46(6), 794–795 (1974)Google Scholar
  16. 16.
    Ruslan, M.M., Nurdin, M., Wahab, A.: Characterization and photocurrent response of Mn–N–TiO 2/Ti electrode: approach for chemical oxygen demand (COD) sensor. Int. J. Appl. Chem. 12, 399–409 (2016)Google Scholar
  17. 17.
    Maulidiyah, M., Tribawono, D.S., Wibowo, D., Nurdin, M.: Electrochemical profile degradation of amino acid by flow system using TiO2/Ti nanotubes electrode. Anal. Bioanal. Electrochem. 8, 761–776 (2016)Google Scholar
  18. 18.
    Arham, Z., Nurdin, M., Buchari, B.: Photoelectrocatalysis performance of La 2 O 3 doped TiO 2/Ti electrode in degradation of rhodamine B organic compound. Int. J. ChemTech Res. 9, 113–120 (2016)Google Scholar
  19. 19.
    Muzakkar, M., Wibowo, D., Nurdin, M.: A novel of buton asphalt and methylene blue as dye-sensitized solar cell using TiO2/Ti nanotubes electrode, IOP conference series: materials science and engineering, p. 012035. IOP Publishing (2017)Google Scholar
  20. 20.
    Umar, A.A., Nafisah, S., Saad, S.K.M., Tan, S.T., Balouch, A., Salleh, M.M., Oyama, M.: Poriferous microtablet of anatase TiO2 growth on an ITO surface for high-efficiency dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells. 122, 174–182 (2014)Google Scholar
  21. 21.
    Umar, A.A., Saad, S.K.M., Umar, M.I.A., Rahman, M.Y.A., Oyama, M.: Advances in porous and high-energy (001)-faceted anatase TiO 2 nanostructures. Opt. Mater. 75, 390–430 (2018)Google Scholar
  22. 22.
    Wibowo, D., Maulidiyah, R., Azis, T., Nurdin, M.: A high-performance electrochemical sensor based on FeTiO3 synthesis coated on conductive substrates. Anal. Bioanal. Electrochem. 10, 465–477 (2018)Google Scholar
  23. 23.
    Gol'dberg, I., Kaplan, Z., Ponomarev, V.: Patterns of vanadium accumulation in petroleum and natural bitumen. Int. Geol. Rev. 28(6), 711–720 (1986)Google Scholar
  24. 24.
    Bagampadde, U., Isacsson, U., Kiggundu, B.: Influence of aggregate chemical and mineralogical composition on stripping in bituminous mixtures. Int. J. Pavement. Eng. 6(4), 229–239 (2005)Google Scholar
  25. 25.
    Maulidiyah, M., Azis, T., Nurwahidah, A.T., Wibowo, D., Nurdin, M.: Photoelectrocatalyst of Fe co-doped N-TiO2/Ti nanotubes: pesticide degradation of thiamethoxam under UV–visible lights. Environmental Nanotechnology, Monitoring & Management. 8, 103–111 (2017)Google Scholar
  26. 26.
    Nurdin, M., Darmawati, D., Maulidiyah, M., Wibowo, D.: Synthesis of Ni, N co-doped TiO 2 using microwave-assisted method for sodium lauryl sulfate degradation by photocatalyst. J. Coat. Technol. Res. 15(2), 395–402 (2018)Google Scholar
  27. 27.
    Aziz, A., Kim, S., Kim, K.S.: Fe/ZSM-5 zeolites for organic-pollutant removal in the gas phase: effect of the iron source and loading. J. Environ. Chem. Eng. 4(3), 3033–3040 (2016)Google Scholar
  28. 28.
    Yoon, S., Bhatt, S.D., Lee, W., Lee, H., Jeong, S.Y., Baeg, J.O., Lee, C.W.: Separation and characteristic of bitumen from athabasca oil sand. Korean J. Chem. Eng. 21, 64–71 (2009)Google Scholar
  29. 29.
    Vinodh, R., Kim, D.K., Ganesh, M., Peng, M.M., Abidov, A., Krishnamurthy, N., Palanichamy, M., Cha, W.S., Jang, H.T.: Hypercross-linked lignite for NOx and CO2 sorption. J. Ind. Eng. Chem. 23, 194–199 (2015)Google Scholar
  30. 30.
    Maulidiyah, M., Natsir, M., Fitrianingsih, F., Arham, Z., Wibowo, D., Nurdin, M.: Lignin degradation of oil palm empty fruit bunches using TiO2 Photocatalyst as antifungal of fusarium oxysporum. Orient. J. Chem. 33(6), 3101–3106 (2017)Google Scholar
  31. 31.
    Azis, T., Nurwahidah, A.T., Wibowo, D., Nurdin, M.: Photoelectrocatalyst of Fe co-doped N-TiO2/Ti nanotubes: pesticide degradation of thiamethoxam under UV–visible lights. Environmental Nanotechnology, Monitoring & Management. 8, 103–111 (2017)Google Scholar
  32. 32.
    LeVan, M.D., Vermeulen, T.: Binary Langmuir and Freundlich isotherms for ideal adsorbed solutions. J. Phys. Chem. 85(22), 3247–3250 (1981)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Muhammad Zakir Muzakkar
    • 1
  • Muhammad Nurdin
    • 1
    Email author
  • Ima Ismail
    • 1
  • Maulidiyah Maulidiyah
    • 1
  • Dwiprayogo Wibowo
    • 1
  • Ratna Ratna
    • 1
  • Siti Khatijah Md Saad
    • 2
  • Akrajas Ali Umar
    • 2
    Email author
  1. 1.Department of Chemistry, Faculty of Mathematics and Natural SciencesUniversitas Halu OleoKendariIndonesia
  2. 2.Institute of Microengineering and NanoelectronicsUniversiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations