Advertisement

Laser Raman Spectroscopic Investigation on the Conversion of Molten Urea into NH3 for the Selective Catalytic Reduction of NOx in Oxygen-Rich Exhaust Gases

  • Philipp Langenfeld
  • Christoph Hahn
  • Andreas Roppertz
  • Sven KuretiEmail author
Special Issue: In Recognition of Professor Wolfgang Grünert's Contributions to the Science and Fundamentals of Selective Catalytic Reduction of NOx
  • 11 Downloads

Abstract

The selective catalytic reduction (SCR) is widely used for the NOx removal from the oxygen-rich exhaust gases of diesel passenger cars and trucks. SCR implies the reduction of NOx by NH3 originated from AdBlue, which is an aqueous solution of urea (32.5 wt.%) stored on-board of the vehicles. However, urea is not completely converted at low exhaust temperatures potentially resulting in by-products and deposits influencing the SCR performance. In this context, the present paper deals with the conversion of molten urea remaining from AdBlue evaporation. A novel reaction chamber equipped with laser Raman spectroscopy (LRS) for quantitative in situ analysis was constructed to examine the conversion of liquid urea as well as formation of side-products. Validation of the analytical set-up was made by ex situ tools including elemental analysis and infrared spectroscopy. The in situ LRS studies performed in diesel model exhaust between 150 and 170 °C evidenced accelerating conversion of the molten urea with increasing temperature, while substantial production of biuret occurred. Additionally, the influence of SCR catalysts such as V2O5/WO3/TiO2, TiO2, and Fe/BEA zeolite on the urea decomposition and by-product formation was evaluated. The in situ LRS investigations showed enhanced NH3 selectivity particularly for TiO2 associated with its pronounced hydrolysis activity in urea conversion. However, estimation of chemical and diffusion kinetics suggested that both hydrolysis and biuret production were strongly affected by mass transport of NH3 and H2O thus limiting the effect of the SCR catalysts upon the reaction of urea.

Keywords

SCR Molten urea Biuret Laser Raman spectroscopy In situ study 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

40825_2019_131_MOESM1_ESM.docx (170 kb)
ESM 1 (DOCX 170 kb)

References

  1. 1.
    Twigg, M.V.: Progress and future challenges in controlling automotive exhaust gas emissions. Appl. Catal. B Environ. 70(1-4), 2–15 (2007)CrossRefGoogle Scholar
  2. 2.
    Deutschmann, O., Grunwaldt, J.-D.: Exhaust gas aftertreatment in mobile systems: status, challenges and perspectives. Chem. Ing. Techn. 85(5), 595–617 (2013)CrossRefGoogle Scholar
  3. 3.
    Koebel, M., Elsener, M., Madia, G.: Reaction pathways in the selective catalytic reduction process with NO and NO2 at low temperature. Ind. Eng. Chem. Res. 40(1), 52–59 (2001)CrossRefGoogle Scholar
  4. 4.
    Fickel, D.W., D’Addio, E., Lauterbach, J.A., Lobo, R.F.: The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Appl. Catal. B Environ. 102(3-4), 441–448 (2011)CrossRefGoogle Scholar
  5. 5.
    Balle, P., Geiger, B., Klukowski, D., Pignatelli, M., Wohnrau, S., Menzel, M., Zirkwa, I., Brunklaus, G., Kureti, S.: Study of the selective catalytic reduction of NOx on an efficient Fe/HBEA zeolite catalyst for heavy duty diesel engines. Appl. Catal. B Environ. 91(3-4), 587–595 (2009)CrossRefGoogle Scholar
  6. 6.
    Gabrielsson, L.T.: Urea-SCR in automotive applications. Top. Catal. 28(1-4), 177–184 (2004)CrossRefGoogle Scholar
  7. 7.
    Habchi, C., Nicolle, A., Gillet, N.: Numerical study of deposits formation in SCR systems using urea-water solution injection. J. Mater. Sci. Nanotechnol. 6(2), 104 (2018)Google Scholar
  8. 8.
    Koebel, M., Elsener, M., Madia, G.: Recent advances in the development of urea-SCR for automotive applications. SAE Technical Papers. (2001).  https://doi.org/10.4271/2001-01-3625
  9. 9.
    Goldbach, M., Roppertz, A., Langenfeld, P., Wackerhagen, M., Füger, S., Kureti, S.: Study of urea decomposition in SCR on V2O5/WO3/TiO2 catalyst in diesel exhaust. Chem. Eng. Technol. 40(11), 2035–2043 (2017)CrossRefGoogle Scholar
  10. 10.
    Bernhard, A., Peitz, D., Elsener, M., Wokaun, A., Kroecher, O.: Hydrolysis and thermolysis of urea and its decomposition byproducts biuret, cyanuric acid and melamine over anatase TiO2. Appl. Catal. B Environ. 115, 129–137 (2012)CrossRefGoogle Scholar
  11. 11.
    Brack, W., Heine, B., Birkhold, F., Kruse, M., Deutschmann, O.: Formation of urea-based deposits in an exhaust system: numerical predictions and experimental observations on a hot gas test bench. Emiss. Control Sci. Technol. 2(3), 115–123 (2016)CrossRefGoogle Scholar
  12. 12.
    Sluder, C.S., Storey, J.M.E., Lewis, S.A., Lewis, L.A.: Low temperature urea decomposition and SCR performance. SAE Technical Papers. (2005).  https://doi.org/10.4271/2005-01-1858
  13. 13.
    Bernhard, A., Czekaj, I., Elsener, M., Kröcher, O.: Adsorption and catalytic thermolysis of gaseous urea on anatase TiO2 studied by HPLC analysis, DRIFT spectroscopy and DFT calculations. Appl. Catal. B Environ. 134-135, 316–323 (2013)CrossRefGoogle Scholar
  14. 14.
    Frost, R.L., Kristof, J., Rintoul, L., Kloprogge, J.T.: Raman spectroscopy of urea and urea-intercalated kaolinites at 77 K. Spectrochim. Acta Part A. 56(9), 1681–1691 (2000)CrossRefGoogle Scholar
  15. 15.
    Schaber, P., Colson, J., Higgins, S., Thielen, D., Anspach, B., Brauer, J.: Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim. Acta. 424(1-2), 131–142 (2004)CrossRefGoogle Scholar
  16. 16.
    Wang, K., Duan, D., Wang, R., Liu, D., Tang, L., Cui, T., Liu, B., Cui, Q., Liu, J., Zou, B., Zou, G.: Pressure-induced phase transition in hydrogen-bonded supramolecular adduct formed by cyanuric acid and melamine. J. Phys. Chem. B. 113(44), 14719–14724 (2009)CrossRefGoogle Scholar
  17. 17.
    Wallace, D.C.: Thermodynamics of Crystals. In: Thermodynamics of Crystals. John Wiley, New York (1972)CrossRefGoogle Scholar
  18. 18.
    Balle, P., Geiger, B., Kureti, S.: Selective catalytic reduction of NOx by NH3 on Fe/BEA zeolite catalysts in oxygen-rich exhaust. Appl. Catal. B Environ. 85(3-4), 109–119 (2009)CrossRefGoogle Scholar
  19. 19.
    Roppertz, A., Füger, S., Kureti, S.: Investigation of urea-SCR at low temperatures. Top. Catal. 60(3-5), 199–203 (2017)CrossRefGoogle Scholar
  20. 20.
    Voskov, A.L., Babkina, T.S., Kuznetsov, A.V., Uspenskaya, I.A.: Phase equilibria in the urea−biuret−water system. J. Chem. Eng. Data. 57(11), 3225–3232 (2012)CrossRefGoogle Scholar
  21. 21.
    Myerson, A.S.: Handbook of Industrial Crystallization, pp. 90–93. Butterworth Heinemann (2002)Google Scholar
  22. 22.
    Kleemann, M., Koebel, M., Elsener, M., Wokaun, A.: Hydrolysis of isocyanic acid on SCR catalysts. Ind. Eng. Chem. Res. 39(11), 4120–4126 (2000)CrossRefGoogle Scholar
  23. 23.
    Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of Gases and Liquids. McGraw-Hill Professional (2000)Google Scholar
  24. 24.
    VDI-Waermeatlas: Springer Vieweg. In: Berlin (2013)Google Scholar
  25. 25.
    Urea datasheet, NIST chemistry WebBook, NIST standard reference database number 69.  https://doi.org/10.18434/T4D303 (2019)
  26. 26.
    Schütte, T.: Ablagerungs- und Alterungsverhalten wässriger Harnstofflösungen bei selektiver katalytischer Reduktion von Stickoxidemissionen. PH.D. thesis, University Lueneburg (2010)Google Scholar
  27. 27.
    Cussler, E.L.: Diffusion: Mass Transfer in Fluid Systems. Cambridge University Press, New York (1997)Google Scholar
  28. 28.
    Bernhard, A. M.: Catalytic urea decomposition, side-reactions and urea evaporation in the selective catalytic reduction of NOX. Ph.D. thesis, ETH Zuerich (2010)Google Scholar
  29. 29.
    Birkhold, F., Meingast, U., Wassermann, P., Deutschmann, O.: Analysis of the injection of urea-water-solution for automotive SCR deNOX-systems: modeling of two-phase flow and spray/wall-interaction. SAE Technical Papers. (2006).  https://doi.org/10.4271/2006-01-0643

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Energy Process Engineering and Chemical Engineering, Chair of Reaction EngineeringTechnical University of FreibergFreibergGermany

Personalised recommendations