Advertisement

Design of a Novel Gasoline Particulate Filter Aging Method

  • Stefan SterlepperEmail author
  • Johannes Claßen
  • Stefan Pischinger
  • Jim Cox
  • Michael Görgen
  • Helmut Lehn
  • Johannes Scharf
Special Article from the ETH Conference 2018
  • 56 Downloads

Abstract

Gasoline particulate filters (GPF) recently entered the market and are already regarded as state-of-the-art for gasoline exhaust aftertreatment systems to enable EU6d-TEMP fulfillment and beyond. Due to its rapid market introduction, the field of GPF lifetime evaluation is still open for research. In this context, the paper describes the advantages of a method for accelerated investigation of filter ash loading during the development of particulate filters. The central task is the simulation of real-world lubrication oil consumption and combustion, which is the major source of ash in the exhaust gases. For that purpose, a burner test bench designed for catalyst aging was additionally equipped with an oil injection unit. The injection unit enables control of the oil volume and the droplet sizes as precursors for the ash particulates. The results obtained with the new filter aging method are compared with data from vehicle endurance runs and with burner test investigations in which the fuel is doped with oil. The latter method is currently considered as the state-of-the-art method for accelerated ash generation. The new method proofed to be vehicle-equivalent in terms of ash-induced backpressure, filtration efficiency, wall ash layer formation, and wall/plug ash ratio. In this context, it turned out that it is important not to atomize the oil droplets too far, since smallest particulates accumulate mainly at the walls and cause unrealistically high backpressures. Furthermore, the ash loading process should include different mass flows in order to achieve stable backpressure results.

Keywords

Gasoline particulate filter (GPF) Accelerated aging Ash in exhaust gases Burner test bench 

Notes

Acknowledgments

The authors acknowledge the support of Corning GmbH for providing GPF hardware and consultancy as well as of Lubrizol Limited for providing the lubrication oil.

Compliance with Ethical Standards

The authors declare that they have no competing interest.

References

  1. 1.
    Görgen, M., Claßen, J., Sterlepper, S., Nijs, M., Lehn, H., Scharf, J., Thewes, M., Hendrikx, M., Baumgarten, H.: Current and future trends of gasoline particulate filter technologies, calibration strategies and aging methods. In: 26th Aachen Colloquium Automobile and Engine Technology, Aachen (2017)Google Scholar
  2. 2.
    Joshi, A., Johnson, T.V.: Gasoline particulate filters - a review. In: Emission Control Science and Technology (2018)Google Scholar
  3. 3.
    Lanzerath, P., Wunsch, R., Schön, C.: The first series–production particulate filter for Mercedes–Benz gasoline engines. In: 17th Stuttgart International Symposium, Stuttgart, Germany (2017)Google Scholar
  4. 4.
    Hentschel, L., Demmelbauer-Ebner, W., Theobald, J., Wendt, W., Thiele, M., Blume, H.: The new 1.0 l TSI with 85 kW and petrol particulate filter–clean, efficient performance for the Up! GTI, in 26th Aachen Colloquium Automobile and Engine Technology 2017, Aachen, Germany (2017)Google Scholar
  5. 5.
    Proust M., Arandyelovitch, A., Trochet, P., Mohsen, O., Gödecke, T., Koch, P., Maass, T., Schnüpke, H.: The new 1.0-liter turbo gasoline engine from the renault-nissan alliance – HR10DDT. In 27th Aachen Colloquium Automobile and Engine Technology 2018, Aachen, Germany (2018)Google Scholar
  6. 6.
    Achleitner E., Frenzel, H., Grimm, J., Maiwald, O., Rösel, G., Senft, P., Zhang, H.: System approach for a vehicle with gasoline direct injection and particulate filter for RDE, in International Vienna Motor Symposium, Vienna (2018)Google Scholar
  7. 7.
    Czerwinski, J., Comte, P., Engelmann, D., Heeb, N., Munoz, M., Bonsack, P., Hensel, V., Mayer, A.: PN-emissions of gasoline cars MPI and potentials of GPF. In: SAE 2018-01-0363. SAE International (2018)Google Scholar
  8. 8.
    Kunert, S., Müller, W., Musa, S., Spiess, S., Hentschel, L., Schlüter, L., Thiele, M.: Integration of the three-way functionality into the gasoline particulate filter – a new technology for the closed-coupled exhaust after-treatment, in International Vienna Motor Symposium, Vienna, (2018)Google Scholar
  9. 9.
    Ito, Y., Shimoda, T., Aoki, T., Yuuki, K., Sakamoto, H.: Next generation of ceramic wall flow gasoline particulate filter with integrated three way catalyst. In: SAE 2015-01-1073. SAE International (2015)Google Scholar
  10. 10.
    Xia, W., Zheng, Y., He, X., Yang, D.: Catalyzed gasoline particulate filter (GPF) performance: effect of driving cycle, fuel, catalyst coating. In: SAE 2017-01-2366. SAE International (2017)Google Scholar
  11. 11.
    Harth, K., Wassermann, K., Arnold, M., Siemund, S., Siani, A., Schmitz, T., Neubauer, T.: Catalyzed gasoline particulate filters: integrated solutions for stringent emission control in International Vienna Motor Symposium, Vienna, (2013)Google Scholar
  12. 12.
    Görgen, M., Sterlepper, S., Herrmann, S., Hendrikx, M., Nijs, M., Scharf, J.: Gasoline particulate filters: market and technology trends and their impact on calibration. In: SIA Powertrain, Versailles (2017)Google Scholar
  13. 13.
    Rose, D., Coulet, B., Nicolin, P., Boger, T., Kunath, F.: Field-study and durabilty evaluations on GDI vehicles equipped with various gasoline particulate filter (GPF) concepts,” in 25th Aachen Colloquium Automobile and Engine Technology, Wiesbaden, Germany, (2016)Google Scholar
  14. 14.
    Lambert, C.K., Bumbaroska, M., Dobson, D., Hangas, J., Pakko, J., Tennison, P.: Analysis of high mileage gasoline exhaust particle filters. In: SAE 2016-01-0941. SAE International (2016)Google Scholar
  15. 15.
    Rubino, L., Thier, D., Schumann, T., Guettler, S., Russ, G.: Fundamental study of GPF performance on soot and ash accumulation over artemis urban and motorway cycles - comparison of engine bench results with GPF durability study on road. In: SAE 2017-24-0127. SAE International (2017)Google Scholar
  16. 16.
    Kern, B., Speiss, S., Richter, J.-M.: The next generation of exhaust gas aftertreatment for gasoline DI-engines, an appropriate measure for meeting the challenge of EU6c legislation? in International Vienna Motor Symposium, Vienna, Austria, (2014)Google Scholar
  17. 17.
    Ruetten, O., Pischinger, S., Küpper, C., Weinowski, R., Gian, D., Ignatov, D., Betton, W., Bahn, M.: Catalyst aging method for future emissions standard requirements. In: SAE 2010-01-1272. SAE International (2010)Google Scholar
  18. 18.
    Peyton Jones, J., Schallock, R.: Persistent memory effects on the mid- and post-brick dynamic behaviour of three-way automotive catalysts. In: IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling. IFP, Rueil-Malmaison, France (2011)Google Scholar
  19. 19.
    Custer, N., Kamp, C., Sappok, A.P.J., Lambert, C., Boerensen, C., Wong, V.: Lubricant-derived ash impact on gasoline particulate filter performance. In: SAE 2016-01-0942. SAE International (2016)Google Scholar
  20. 20.
    Lambert, C., Chanko, T., Janger, M., Hangas, J.: Analysis of ash in low mileage, rapid aged, and high mileage gasoline exhaust particle filters. In: SAE 2017-01-0930. SAE International (2017)Google Scholar
  21. 21.
    Yilmaz, E., Tian, T., Wong, V.W., Heywood, J.B.: The contribution of different oil consumption sources to total oil consumption in a spark ignition engine. In: SAE 2004-01-2909. SAE International, Tampa (2004)Google Scholar
  22. 22.
    Delvigne, T.: Oil consumption sources in a modern gasoline engine including contribution of blow-by separator and turbocharger: an experimental study based on the use of radiotracers. In: SAE 2010-01-2256. SAE International (2010)Google Scholar
  23. 23.
    Gunkel, M., Frensch, M., Robota, A., Gelhausen, R.: Inner engine emissions reduction - the interrelationship between particle emissions and oil consumption. MTZ worldwide, 07–08 (2018)Google Scholar
  24. 24.
    Bock, N., Jeon, J., Kittelson, D., Northrop, W.F.: Solid particle number and mass emissions from lean and stoichiometric gasoline direct injection engine operation. In: SAE 2019-01-0359. SAE International (2018)Google Scholar
  25. 25.
    Rönkkö, T., Pirjola, L., Ntziachristos, L., Heikkilä, J., Karjalainen, P., Hillamo, R., Keskinen, J.: Vehicle engines produce exhaust nanoparticles even when not fueled. In: Environmental Science and Technology. ACS Publications (2014)Google Scholar
  26. 26.
    Gohl, M., Matz, G., Preuss, A.-C., Pischinger, S., Günther, M., Ebert, T.: Investigation of oil sources in the combustion chamber of direct injection gasoline engines. In: SAE 2018-01-1811. SAE International (2018)Google Scholar
  27. 27.
    Sappok, A., Wang, Y., Wang, R.-Q., Kamp, C., Wong, V.: Theoretical and experimental analysis of ash accumulation and mobility in ceramic exhaust particulate filters and potential for improved ash management. In: SAE 2014-01-1517. SAE International (2014)Google Scholar
  28. 28.
    Rubino, L., Piotr Oles, J., La Rocca, A.: Evaluating performance of uncoated GPF in real world driving using experimental results and CFD modelling. In: SAE 2017-24-0128. SAE International (2017)Google Scholar
  29. 29.
    Sappok, A., Rodriguez, R., Wong, V.: Characteristics and effects of lubricant additive chemistry on ash properties impacting diesel particulate filter service life. In: SAE 2010-01-1213. SAE International (2010)Google Scholar
  30. 30.
    Shao, H.L.W., Remias, J., Roos, J., Choi, S., Seong, H.: Effect of lubricant oil properties on the performance of gasoline particulate filter (GPF). In: SAE 2016-01-2287. SAE International (2016)Google Scholar
  31. 31.
    Choi, S., Seong, H.: Lube oil-dependent ash chemistry on soot oxidation reactivity in a gasoline direct-injection engine. Combustion and Flame. (2016)Google Scholar
  32. 32.
    Youngquist, A.D., Nguyen, K., Bunting, B.G., Toops, T.J.: Development of an accelerated ash loading protocol for diesel particulate filters. In: SAE 2008-01-2496. SAE International, Rosemont (2008)Google Scholar
  33. 33.
    Bardasz, E., Mackney, D., Britton, N., Kleinschek, G., Olofsson, K., Murray, I., Walker, A.P.: Investigations of the Interactions between lubricant-derived species and aftertreatment systems on a state-of-the-art heavy duty diesel engine. In: SAE 2003-01-1963. SAE International (2003)Google Scholar
  34. 34.
    Harris, T., Kozlov, A., Ayyappan, P., Combs, J.: Engine test protocol for accelerated ash loading of a diesel particulate filter. In: SAE 2011-01-0607. SAE International (2011)Google Scholar
  35. 35.
    Hua, L., Pan, J., MIAO, S., Gu, D.e.a.: Effect of ash on gasoline particulate filter using an accelerated ash loading method. In: SAE 2018-01-1258. SAE International (2018)Google Scholar
  36. 36.
    Shao, H., Carpentier, G., Yin, D., Wang, Y., Remias, J., Roos, J., Xia, W., Zheng, Y., Yuan, X., Yang, D., He, X., Yin, Z.: Engine accelerated aging method developed to study the effect of lubricant formulations on catalyzed gasoline particulate filter durability. In: SAE 2018-01-1804. SAE International (2018)Google Scholar
  37. 37.
    Jung, H., Kittelson, D.B., Zachariah, M.R.: The influence of engine lubricating oil on diesel nanoparticle emissions and kinetics of oxidation. In: SAE 2003-01-3179. SAE International (2003)Google Scholar
  38. 38.
    Eakle, S., Avery, S., Weber, P., Henry, C.: Comparison of accelerated ash loading methods for gasoline particulate filters. In: SAE 2018-01-1703. SAE International (2018)Google Scholar
  39. 39.
    Nowak, D.: Ruß- und Aschedeposition in Ottopartikelfiltern. Volkswagen Aktiengesellschaft AutoUni, Wolfsburg (2017)Google Scholar
  40. 40.
    Zarvalis, D., Lorentzou, S., Konstandopoulos, A.G.: A methodology for the fast evaluation of the effect of ash aging on the diesel particulate filter performance. In: SAE 2009-01-0630. SAE International (2009)Google Scholar
  41. 41.
    Sappok, A., Santiago, M., Vianna, T., Wong, V.W.: Characterstics and effects of ash accumulation on diesel particulate filter performance: rapidly aged and field aged results. In: SAE 2009-01-1086. SAE International (2009)Google Scholar
  42. 42.
    Jorgensen, J., Murray, T., Sappok, A., Wong, V., Börensen, C., Lambert, C., Pakko, J., Warner, J.: The effect of ash accumulation an gasoline particulate filters: a comparison between laboratory and fiel aged samples. In: ASME 2014 Internal Combustion Engine Division Fall Technical Conference (2014)Google Scholar
  43. 43.
    Sonntag, F., Eilts, P.: Evaluation of accelerated ash loading procedures for diesel particulate filters. In: SAE 2016-01-0939. SAE International (2016)Google Scholar
  44. 44.
    Sonntag F.: Motorische Methoden der Schnellveraschung von DPF, DOC und SCR durch Motoröl und Einfluss auf Morphologie, Verteilung, Wiederfindungsrate und Vergiftungswirkung, Forschungsvereinigung Verbrennungskraftmaschinen e.V., (2014)Google Scholar
  45. 45.
    Bernardoff, R., Hennebert, B., Delvigne, T., Courtois, O.: A study of ash accumulation in the after-treatment system of a gasoline direct injection engine equipped with a gasoline particulate filter. In: SAE 2017-01-0879. SAE International (2017)Google Scholar
  46. 46.
    Lanzerath, P., Traebert, A., Massner, A., Uwe, G.: Investigations on chemical ageing of diesel oxidation catalysts and coated diesel particulate filters. In: SAE 2010-01-1212. SAE International (2010)Google Scholar
  47. 47.
    (ASTM International, D8742018): Standard test method for sulfated ash from lubricating oils and additives, West Conshohocken (2018)Google Scholar
  48. 48.
    Chijiiwa, R., Rose, D., Nicolin, P., Coulet, B., Jung, F., Glasson, T., Lv, Z., Bachurina, A., Shimizu, M., Boger, T.: Ash accumulation in advanced gasoline particulate filter technologies. In: JSAE 20185404, p. 2018. Society of Automotive Engineers of Japan, Inc.Google Scholar
  49. 49.
    Zhao, C., Zhu, Y., Huang, S.: Pressure drop and soot accumulation characteristics through diesel particulate filters considering various soot and ash distribution types. In: SAE 2017-01-0959. SAE International (2017)Google Scholar
  50. 50.
    Shimizu, M., Park, J., He, S., Lv, J., Rose, D., Coulet, B., Glasson, T., Boger, T.: Performance evolution of gasoline particulate filters over extended vehicle and engine bench operation, in 17th Hyundai-Kia International Powertrain Conference, Gyeonggi-do, Korea, (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Combustion EnginesRWTH Aachen UniversityAachenGermany
  2. 2.FEV Europe GmbHAachenGermany

Personalised recommendations