Advertisement

Emission Control Science and Technology

, Volume 4, Issue 4, pp 219–239 | Cite as

Gasoline Particulate Filters—a Review

  • Ameya Joshi
  • Timothy V. Johnson
Article
  • 124 Downloads

Abstract

To improve ambient air quality, several countries have adopted regulations setting stringent limits on vehicular tailpipe emissions of particulates. The issue of high particulate emissions has been mostly addressed for diesel vehicles with the widespread adoption of diesel particulate filters (DPFs). Attention is now turned to gasoline direct injection (GDI) technology, which provides improved fuel economy and performance, but also increased particulate emissions, as compared to the port fuel injection (PFI) engines. Europe has set a particle number (PN) limit on emissions from GDI vehicles, while China has expanded that to include all gasoline vehicles. In the USA, these are regulated through particle mass (PM) limits. To meet these regulations, it is anticipated that gasoline particulate filters (GPFs) will be widely applied to gasoline exhaust after-treatment. GPF technology has rapidly advanced, and already a wide range of pore size distribution and cell geometries are being offered to minimize back pressure and offer high ash storage capacity, high filtration efficiency, and, in the case of filters combined with three-way catalytic functionality, high conversion of gas-phase criteria pollutants. This review summarizes representative studies on particulate emissions from gasoline engines, the nature of the particulates, and the advances in GPF technology.

Keywords

Gasoline particulate filters GPF GDI Particulates Euro 6, China 6 

Notes

Compliance with Ethical Standards

The authors declare that they have no competing interests.

References

  1. 1.
    Davis, S.C., Williams, S.E., Boundy, R.G., Moore, S.: Vehicle Technologies Market Report. Oak Ridge National Lab, ORNL. 2016Google Scholar
  2. 2.
    Zhao, F., Harrington, D.L., Lai, M.C.: Automotive gasoline direct-injection engines, SAE. 2002Google Scholar
  3. 3.
    Bandel, W., Fraidl, G., Kapus, P., Sikinger, H. et al.: The turbocharged GDI engine: boosted synergies for high fuel economy plus ultra-low emission, SAE 2006-01-1266Google Scholar
  4. 4.
    Woldring, D., Landenfeld, T., Christie, M.: DI boost: application of a high performance gasoline direct injection concept, SAE 2007-01-1410Google Scholar
  5. 5.
    Davis, R., Mandrusiak, G., Landenfeld, T.: Development of the combustion system for General Motors’ 3.6L DOHC 4V V6 engine with direct injection. SAE Int. J. Engines. 1(1), 85–100 (2008)CrossRefGoogle Scholar
  6. 6.
    Johnson, T., Joshi, A.: Review of vehicle engine efficiency and emissions. SAE Technical Paper 2018-01-0329 (2018)Google Scholar
  7. 7.
    Platt, S.M., El Haddad, I., Pieber, S.M., Zardini, A.A., Suarez-Bertoa, R., Clairotte, M., Daellenbach, K.R., Huang, R.-J., Slowik, J.G., Hellebust, S., Temime-Roussel, B., Marchand, N., de Gouw, J., Jimenez, J.L., Hayes, P.L., Robinson, A.L., Baltensperger, U., Astorga, C., Prévôt, A.S.H.: Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars. Sci Rep. 7, 4926Google Scholar
  8. 8.
    Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 389, 1907–18 (2017)Google Scholar
  9. 9.
    GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 388(10053), 1659–724 (2016)Google Scholar
  10. 10.
    Shah, A.S.V., Langrish, J.P., Nair, H., McAllister, D.A., Hunter, A.L., Donaldson, K., Newby, D.E., Mills, N.L.: Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet. 382(9897), 1039–1048 (2013)CrossRefGoogle Scholar
  11. 11.
    WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide, Global update 2005, Summary of risk assessment WHO Air quality guidelines. 2005. http://whqlibdoc.who.int/hq/2006/WHO_SDE_PHE_OEH_06.02_eng.pdf
  12. 12.
    State of Global Air 2017, Special Report. Health Effects Institute, Boston, MAGoogle Scholar
  13. 13.
    U.S. Environmental Protection Agency. 40 CFR Parts 79, 80, 85, et al. Control of air pollution from motor vehicles: Tier 3 motor vehicle emission and fuel standards; Final Rule. April 28, 2014, http://www.gpo.gov/fdsys/pkg/FR-2014-04-28/pdf/2014-06954.pdf
  14. 14.
    LEV III PM Technical Support Document Appendix P: Development of particulate matter mass standards for future light-duty vehicles. (2012). http://www.arb.ca.gov/regact/2012/leviiighg2012/leviiighg2012.htm
  15. 15.
    ARB: An update on the measurement of PM emissions at LEV III levels. (2015). https://www.arb.ca.gov/msprog/levprog/leviii/lev_iii_pm_measurement_feasibility_tsd_20151008.pdf
  16. 16.
    Hu, S., Zhang, S., Sardar, S., Chen, S., Dzhema, I., Huang, S-M, Quiros, D., Sun, H., Laroo, C., Sanchez, L.J., Watson, J., Chang, M.-C.O., Huai, T., Ayala, A.: Evaluation of gravimetric method to measure light duty vehicle particulate matter emissions at levels below one milligram per mile (1 mg/mile) SAE 2014-01-1571. 2014Google Scholar
  17. 17.
    Maricq, M.M., Szente, J.J., Harwell, A.L., Loos, M.J.: Impact of aggressive drive cycles on motor vehicle exhaust PM emissions. J. Aerosol. Sci. 113, 1–11 (2017)CrossRefGoogle Scholar
  18. 18.
    Shields, E.: Particulate matter (PM) emissions from low greenhouse gas engine technologies, presented at Advanced Clean Cars Symposium. Sept, 2016Google Scholar
  19. 19.
    Xue, J., Li, Y., Quiros, D., Hu, S., Huai, T., Ayala, A., Jung, H.S.: Investigation of alternative metrics to quantify PM mass emissions from light duty vehicles. J. Aerosol Sci. 113, 85–94 (2017)CrossRefGoogle Scholar
  20. 20.
    Khalek, I.A., Bougher, T., Jetter, J.J.: Particle emissions from a 2009 gasoline direction injection engine using different commercially available fuels. SAE Int. J. Fuel Lubr. 3(2), 623–637 (2010)CrossRefGoogle Scholar
  21. 21.
    Maricq, M.M., Szente, J., Loos, M., Vogt, R.: Motor vehicle PM emissions measurement at LEV III levels. SAE Int. J. Engines. 4(1), 597 (2011)CrossRefGoogle Scholar
  22. 22.
    Maricq, M.M., Szente, J., Adams, J., Tennison, P., Rumpsa, T.: Influence of mileage accumulation on the particle mass and number emissions of two gasoline direct injection vehicles. Environ. Sci. Technol. 47(20), 11890–11896 (2013)CrossRefGoogle Scholar
  23. 23.
    Chan, W., Meloche, E., Kubsh, J., Brezny, R.: Black carbon emissions in gasoline exhaust and a reduction alternative with a gasoline particulate filter. Environ. Sci. Technol. 48(10), 6027–6034 (2014)CrossRefGoogle Scholar
  24. 24.
    Yamada, H., Inomata, S., Tanimoto, H.: Particle and VOC emissions from stoichiometric gasoline direct injection vehicles and correlation between particle number and mass emissions. Emiss. Control Sci. Technol. 3(2), 135–141 (2017)CrossRefGoogle Scholar
  25. 25.
    Whitaker, P., Kapus, P., Ogris, M., Hollerer, P.: Measures to reduce particulate emissions from gasoline DI engines. SAE Int. J. Engines. 4(1), 1498–1512 (2011)CrossRefGoogle Scholar
  26. 26.
    McNeil, S., Adamovicz, P., Lieder, F.: Bosch Motronic MED9.6.1 EMS applied on a 3.6L DOHC 4V V6 direct injection engine. SAE Technical Paper 2008-01-0133Google Scholar
  27. 27.
    Peer, J., Backes, F., Sauerland, H., Härtl, M. et al.: Development of a high turbulence, low particle number, high injection pressure gasoline direct injection combustion system. SAE Int. J. Engines. 9(4) (2016)Google Scholar
  28. 28.
    Ketterer, J. E., Cheng W. K.: On the nature of particulate emissions from DISI engines at cold-fast-idle. SAE Int. J. Engines. 7(2), (2014)Google Scholar
  29. 29.
    Piock, W., Hoffmann, G., Berndorfer, A., Salemi P., Fusshoeller, B.: Strategies towards meeting future particulate matter emission requirements in homogeneous gasoline direct injection engines. SAE Technical Paper 2008-01-1212Google Scholar
  30. 30.
    Pritchard, J., Cheng, W.: Effects of secondary air on the exhaust oxidation of particulate matters. SAE Int. J. Engines. 8(3), (2015)Google Scholar
  31. 31.
    Fraidl, G. K., Hirsch, A., Kapus, P. E., Ogris, M., Philipp, H., Vidmar, К.: Development process for lowest engine out particulate number with GDI, 7th International Exhaust Gas and Particle Emissions Forum, Ludwigsburg, Germany, pp. 11–20. (2012)Google Scholar
  32. 32.
    Fraidl, G., Hollerer, P., Kapus, P., Ogris, M., Vidmar, K.: Particulate number for EU6+: challenges and solutions. IQPC Advanced Emission Control Concepts for Gasoline Engines, Stuttgart, Germany (2012)Google Scholar
  33. 33.
    Arters, D.C., Bardasz, E.A., Schiferl, E.A., Fisher, D.W.: A comparison of gasoline direct injection part I – fuel system deposits and vehicle performance. SAE Technical Paper 1999-01-1498Google Scholar
  34. 34.
    Smith, S., Imoehl, W.: Measurement and control of fuel injector deposits in direct injection gasoline vehicles. SAE Technical Paper 2013-01-2616Google Scholar
  35. 35.
    Aradi, A., Imoehl, B., Avery, N., Wells, P. et al.: The effect of fuel composition and engine operating parameters on injector deposits in a high-pressure direct injection gasoline (DIG) research engine,. SAE Technical Paper 1999-01-3690,Google Scholar
  36. 36.
    Wen, Y., Wang, Y., Fu, C., Deng, W. et al.: The impact of injector deposits on spray and particulate emission of advanced gasoline direct injection vehicle. SAE Technical Paper 2016-01-2284Google Scholar
  37. 37.
    Wang, C., Xu, H., Herreros, J.M., Wang, J., Cracknell, R.: Impact of fuel and injection system on PM emissions from a DISI engine. Appl. Energy. 132, 178e91 (2014)CrossRefGoogle Scholar
  38. 38.
    Prakash, A., Nelson, E., Jones, A., Macias, J. et al.: Particulate mass reduction and clean-up of DISI injector deposits via novel fuels additive technology. SAE Technical Paper 2014-01-2847, 2014Google Scholar
  39. 39.
    Bahreini, R., Xue, J., Johnson, K., Durbin, T., Quiros, D., Hu, S., Huai, T., Ayala, A., Jung, H.: Characterizing emissions and optical properties of particulate matter from PFI and GDI light-duty gasoline vehicles. J. Aerosol Sci. 90, 144–153 (2015)CrossRefGoogle Scholar
  40. 40.
    Koczak, J., Boehman, A., Brusstar, M.: Particulate emissions in GDI vehicle transients: an examination of FTP, HWFET, and US06 measurements. SAE 2016-01-0992 (2016)Google Scholar
  41. 41.
    Parks, J.E., Storey, J.M.E., Prikhodko, V.Y., Debusk, M.M., Lewis, S.A.: Filter-based control of particulate matter from a lean gasoline direct injection engine. SAE 2016-01-0937 (2016)Google Scholar
  42. 42.
    Bock, N., Jeon, J., Kittelson, D., Northrop, W.F.: Solid particle number and mass emissions from lean and stoichiometric gasoline direct injection engine operation,. SAE Technical Paper 2018-01-0359 (2018)Google Scholar
  43. 43.
    Kern, B.: The next generation comprehensive emission control for direct injecting gasoline engines. Presented at the 3rd International Conference Advanced Emission Control Concepts for Gasoline Engines. Dusseldorf, Germany (2014)Google Scholar
  44. 44.
    Andersson, J., Demuynck, J., Hamje, H. AECC/Concawe2016 GPF RDE PN Test Programme: PN measurement above and below 23nm, 21st ETH-Conference on Combustion Generated Nanoparticles. ETH Zurich (2017)Google Scholar
  45. 45.
    Badshah, H., Kittelson, D., Northrop, W.: Particle emissions from light-duty vehicles during cold-cold start. SAE Int. J. Engines. 9(3), (2016)Google Scholar
  46. 46.
    Suarez-Bertoa, R., Astorga, C.: Impact of cold temperature on euro 6 passenger car emissions. Environ. Pollut. 234, 318–329 (2018)CrossRefGoogle Scholar
  47. 47.
    OudeNijeweme, D., Chen, X.: Cold start particulate emissions from a second generation DI gasoline engine. SAE 2007-01-1931 (2007)Google Scholar
  48. 48.
    Leach, F., Stone, R., and Richardson, D.: The influence of fuel properties on particulate number emissions from a direct injection spark ignition engine. SAE Technical Paper 2013-01-1558 (2013)Google Scholar
  49. 49.
    Butler, A., Sobotowski, R., Hoffman, G., Machiele, P.: Influence of Fuel PM index and ethanol content on particulate emissions from light-duty gasoline vehicles. SAE Technical Paper 2015-01-1072 (2015)Google Scholar
  50. 50.
    Qin, J., Li, X., Pei, Y.: Effects of combustion parameters and lubricating oil on particulate matter emissions from a turbo-charged GDI engine fueled with methanol/gasoline blends,. SAE Technical Paper 2014-01-2841 (2014)Google Scholar
  51. 51.
    Tanaka, D., Uchida, R., Noda, T., Kolbeck, A. et al.: Effects of fuel properties associated with in-cylinder behavior on particulate number from a direct injection gasoline engine,. SAE Technical Paper 2017-01-1002 (2017)Google Scholar
  52. 52.
    Chan, T.W., Saffaripour, M., Liu, F., Hendren, J., Thomson, K.A., Kubsh, J., Brezny, R., Rideout, G.: Characterization of real-time particle emissions from a gasoline direct injection vehicle equipped with a catalyzed gasoline particulate filter during filter regeneration. Emiss. Control Sci. Technol. 2(2), 75–88 (2016)CrossRefGoogle Scholar
  53. 53.
    Aikawa, K., Sakurai, T., Jetter, J. J.: Development of a predictive model for gasoline vehicle particulate matter emissions. SAE Technical Paper 2010-01-2115 (2010)Google Scholar
  54. 54.
    Khalek, I., Bougher, T., Jetter, J.: Particle emissions from a 2009 gasoline direct injection engine using different commercially available fuels. SAE Int. J. Fuels Lubr. 3(2), 623–637 (2010)CrossRefGoogle Scholar
  55. 55.
    Kim, Y., Kim, Y., Kang, J., Jun, S., Rew, S., Lee, D.: Fuel effect on particle emissions of a direct injection engine. SAE 2013-01-1559 (2013)Google Scholar
  56. 56.
    Storey, J., Lewis, S., Szybist, J., Thomas, J., et al.: Novel characterization of GDI engine exhaust for gasoline and mid-level gasoline-alcohol blends. SAE Int. J. Fuels Lubr. 7(2), 571–579 (2014)CrossRefGoogle Scholar
  57. 57.
    Karavalakis, G., Short, D., Vu, D., Russell, R., Hajbabaei, M., Asa-Awuku, A., Durbin, T.D.: Evaluating the effects of aromatics content in gasoline on gaseous and particulate matter emissions from SI-PFI and SIDI vehicles. Environ. Sci. Technol. 49, 7021–7031 (2015)CrossRefGoogle Scholar
  58. 58.
    Zhu, R., Hu, J., Bao, X., He, L., Lai, Y., Zu, L., Li, Y., Su, S.: Tailpipe emissions from gasoline direct injection (GDI) and port fuel injection (PFI) vehicles at both low and high ambient temperatures. Environ. Pollut. 216, 223–234 (2016)CrossRefGoogle Scholar
  59. 59.
    Chan, T., Meloche, E., Kubsh, J., Rosenblatt, D. et al.: Evaluation of a gasoline particulate filter to reduce particle emissions from a gasoline direct injection vehicle. SAE Int. J. Fuels Lubr. 5(3), (2012)Google Scholar
  60. 60.
    Yinhui, W., Rong, Z., Yanhong, Q., Jianfei, P., Mengren, L., Jianrong, L., Yusheng, W.: The impact of fuel compositions on the particulate emissions of direct injection gasoline engine. Fuel. 166, 543–552 (2016)CrossRefGoogle Scholar
  61. 61.
    Murad, S., Camm, J., Davy, M., Stone, R.: Spray behaviour and particulate matter emissions with M15 methanol/gasoline blends in a GDI engine. SAE 2016-01-0991 (2016)Google Scholar
  62. 62.
    Hergueta, C., Bogarra, M., Tsolakis, A., Essa, K., Herreros, J.M.: Butanol-gasoline blend and exhaust gas recirculation, impact on GDI engine emissions. Fuel. 208, 662–672 (2017)CrossRefGoogle Scholar
  63. 63.
    Chan, T.W., Lax, D., Gunter, G.C., Hendren, J., Kubsh, J., Brezny, R.: Assessment of the fuel composition impact on black carbon mass, particle number size distributions, solid particle number, organic materials, and regulated gaseous emissions from a light-duty gasoline direct injection truck and passenger Car. Energy Fuel. 31(10), 10452–10466 (2017)CrossRefGoogle Scholar
  64. 64.
    Wang, C., Xu, H., Herreros, J.M., Lattimore, T., Shuai, S.: Fuel effect on particulate matter (PM) composition and soot oxidation in a gdi engine. 2014 Cambridge Particle Meeting. (2014)Google Scholar
  65. 65.
    Oh, C., Cheng, W.K.: Assessment of gasoline direct injection engine cold start particulate emission sources. SAE Int. J. Engines. 10(4), (2017)Google Scholar
  66. 66.
    Yang, J., Roth, P., Durbin, T.D., Johnson, K.C., Cocker III, D.R., Asa-Awuku, A., Brezny, R., Geller, M., Karavalakis, G.: Gasoline particulate filters as an effective tool to reduce particulate and polycyclic aromatic hydrocarbon emissions from gasoline direct injection (GDI) vehicles: a case study with two GDI vehicles. Environ. Sci. Technol. 52(5), 3275–3284 (2018)CrossRefGoogle Scholar
  67. 67.
    Seong, H., Lee, K., Choi, S.: Effects of engine operating parameters on morphology of particulates from a gasoline direct injection (GDI) engine, SAE Technical Paper 2013-01-2574 (2013)Google Scholar
  68. 68.
    Samuel, S., Hassaneen, A., Morrey, D.: Particulate matter emissions and the role of catalytic converter during cold start of GDI engine. SAE Technical Paper 2010-01-2122 (2010)Google Scholar
  69. 69.
    Bogarra, M., Herreros, J.M., Hergueta, C., Tsolakis, A., York, A.P.E., Millington, P.J.: Influence of three-way catalyst on gaseous and particulate matter emissions during gasoline direct injection engine cold-start. Johnson Matthey Technol. Rev. 61(4), 329 (2017)CrossRefGoogle Scholar
  70. 70.
    Boger, T., Rose, D., Nicolin, P., Gunasekaran, N., Glasson, T.: Oxidation of soot (Printex U) in particulate filters operated on gasoline engines. Emiss. Control Sci. Technol. 1(1), 49–63 (2015)CrossRefGoogle Scholar
  71. 71.
    Merkel, G., Cutler, W.A., Warren, C.J.: Thermal durability of wall-flow ceramic diesel particulate filters. SAE 2001-01-0190 (2001)Google Scholar
  72. 72.
    Tandon, P., Heibel, A., Whitmore, J., Kekre, N., Chithapragada, K.: Measurement and prediction of filtration efficiency evolution of soot loaded diesel particulate filters. Chem. Eng. Sci. 65(16), 4751–4760 (2010)CrossRefGoogle Scholar
  73. 73.
    Zhong, D., He, S., Tandon, P., Moreno, M., Boger, T.: Measurement and prediction of filtration efficiency evolution of soot loaded diesel particulate filters. SAE 2012-01-0363 (2012)Google Scholar
  74. 74.
    Saito, C., Nakatani, T., Miyairi, Y., Yuuki, K., Makino, M., Kurachi, H., Heuss, W., Kuki, T., Furuta, Y., Kattouah, P., Vogt, C.: New particulate filter concept to reduce particle number emissions. SAE 2011-01-0814 (2011)Google Scholar
  75. 75.
    Shimoda, T., Ito, Y., Saito, C., Nakatani, T., Shibagaki, Y., Yuuki, K., Sakamoto, H., Vogt, C., Matsumoto, T., Furuta, Y., Heuss, W., Kattouah, P., Makino, M.: Potential of a low pressure drop filter concept for direct injection gasoline engines to reduce particulate number emission. SAE 2012-01-1241 (2012)Google Scholar
  76. 76.
    Richter, J.M., Klingmann, R., Spiess, S., Wong, K.-F.: Application of catalyzed gasoline particulate filters to GDI vehicles. SAE 2012-01-1244 (2012)Google Scholar
  77. 77.
    Spiess, S., Wong, K.F., Richter, J.M., Klingmann, R.: Investigations of emission control systems for gasoline direct injection engines with a focus on removal of particulate emissions. Top. Catal. 56, 434–439 (2013)CrossRefGoogle Scholar
  78. 78.
    Rose, D., Boger, T., Nicolin, P., Ingram-Ogunwumi, R., Bischof, C., Gunasekaran, N.: Advanced filter technologies to reduce particulate emissions of GDI engines. In: 22nd Aachen Colloquium Automobile and Engine Technology. 2013Google Scholar
  79. 79.
    Ito, Y., Shimoda, T., Aoki, T., Shibagaki, Y., Yuuki, K., Sakamoto, H., Vogt, C., Matsumoto, T., Heuss, W., Kattouah, P., Makino, M., Kato, K.: Advanced ceramic wall flow filter for reduction of particulate number emission of direct injection gasoline engines. SAE 2013-01-0836 (SAE) (2013)Google Scholar
  80. 80.
    Ito, Y., Shimoda, T., Aoki, T., Yuuki, K., Sakamoto, H., Kato, K., Thier, D., Kattouah, P., Ohara, E., Vogt, C.: Next generation of ceramic wall flow gasoline particulate filter with integrated three way catalyst. SAE 2015-01-1073 (2015)Google Scholar
  81. 81.
    Craig, A., Warkins, J., Aravelli, K., Moser, D., Yang, L., Ball, D., Tao, T., Ross, D.: Low cost LEV-III, Tier-III emission solutions with particulate control usingadvanced catalysts and substrates. SAE 2016-01-0925 (2016)Google Scholar
  82. 82.
    Masoudi, M., Konstandopoulos, A.G., Nikitidis, M.S., Skaperdas, E., Zarvalis, D., Kladopoulou, E., Altiparmakis, C., Validation of a model and development of a imulator for predicting the pressure drop of diesel particulate filters. SAE 2001-01-0911 (2001)Google Scholar
  83. 83.
    Liu, X., Chanko, T., Lambert, C., Maricq, M.: Gasoline Particulate filter efficiency and backpressure at very low mileage,. SAE Technical Paper 2018-01-1259 (2018)Google Scholar
  84. 84.
    Joshi, A., Bronfenbrenner, D., Tanner, C., Ogunwumi, R., Rose, D., Nicolin P., Coulet, B., Boger, T.: High porosity substrate and filter technologies for advanced gasoline applications. In: 2015 15th Hyundai-Kia International Powertrain Conference. Seoul, Korea. (2015)Google Scholar
  85. 85.
    Jang, J., Lee, J., Choi, Y., Park, S.: Reduction of particle emissions from gasoline vehicles with direct fuel injection systems using a gasoline particulate filter. Sci. Total Environ. 644, 1418–1428 (2018)CrossRefGoogle Scholar
  86. 86.
    Nair, A.R., Schubring, B., Premchand, K., Brocker, A., Croswell, P., DiMaggio, C., Ahari, H., Wuttke, J., Zammit, M., Smith, MA.: Methodology to determine the effective volume of gasoline particulate filter technology on criteria emissions. SAE 2016-01-0936 (2016)Google Scholar
  87. 87.
    Van Nieuwstadt, M., Ulrey, J.: Control strategies for gasoline particulate filters. SAE Technical Paper 2017-01- 0931 2017Google Scholar
  88. 88.
    Messerer, A., Niessner, R., Poschl, U.: Comprehensive kinetic characterization of the oxidation and gasification of model and real diesel soot by nitrogen oxides and oxygen under engine exhaust conditions: measurement, Langmuir–Hinshelwood, and Arrhenius parameters. Carbon. 44, 307–324 (2006)CrossRefGoogle Scholar
  89. 89.
    Sharma, H.N., Pahalagedara, L., Joshi, A., Suib, S.L., Mhadeshwar, A.B.: Experimental study of carbon black and diesel engine soot oxidation kinetics using thermogravimetric analysis. Energy Fuels. 26, 5613–5625 (2012)CrossRefGoogle Scholar
  90. 90.
    Achleitner, E., Frenzel, H., Grimm, J., Maiwald, O., Rösel, G., Senft, P., Zhang, H.: System approach for a vehicle with gasoline direct injection and particulate filter for RDE, presented at the 39th International Vienna Motor Symposium, April 26th-27th 2018, ViennaGoogle Scholar
  91. 91.
    Bernardoff, R., Hennebert, B., Delvigne, T., et al.: A study of ash accumulation in the after-treatment system of a gasoline direct injection engine equipped with a gasoline particulate filter, SAE Technical Paper 2017-01-0879Google Scholar
  92. 92.
    Nicolin, P., Rose, D., Kunath, F., Boger, T.: Modeling of the soot oxidation in gasoline particulate filters. SAE Int. J. Engines. 8(3), (2015)Google Scholar
  93. 93.
    Custer, N., Kamp, C.J., Sappok, A., Pakko, J., Lambert, C., Boerensen, C., Wong, V.: Lubricant-derived ash impact on gasoline particulate filter performance. SAE 2016-01-0942 (2016)Google Scholar
  94. 94.
    Lambert, C., Bumbaroska, M., Dobson, D., Hangas, J. et al.: Analysis of high mileage gasoline exhaust particle filters, SAE Int. J. Engines 9(2), (2016)Google Scholar
  95. 95.
    Lambert, C., Chanko, T., Jagner, M., Hangas, J. et al.: Analysis of Ash in Low Mileage, Rapid Aged, and High Mileage Gasoline Exhaust Particle Filters. SAE Int. J. Engines. 10(4), (2017)Google Scholar
  96. 96.
    Boger, T.: Global experiences of the adoption of gasoline particulate filter (GPF) on gasoline direct injection (GDI) cars, presented at the 13th Integer Emissions Summit Europe & AdBlueForum 2017, Dresden, 27-29th June 2017Google Scholar
  97. 97.
    Chijiiwa, R., Rose, D., Nicolin, P., Coulet, B., Jung, F., Glasson, T., Lv, Z., Bachurina, A., Shimizu, M., and Boger, T.: Ash accumulation in advanced gasoline particulate filter technologies, to be presented at 2018 JSAE Annual Congress (Spring)Google Scholar
  98. 98.
    Rubino, L., Piotr Oles, J., and La Rocca, A.: Evaluating performance of uncoated GPF in Real world driving using experimental results and CFD modelling, SAE Technical Paper 2017-24-0128Google Scholar
  99. 99.
    Bromberg, L., Cohn, D.: Optimized PFI+DI operation for minimizing DI gasoline engine particulates. SAE Technical Paper 2018-01-1415, 2018Google Scholar
  100. 100.
    Czerwinski, J., Comte, P., Engelmann, D., Heeb, N. et al.: PN-Emissions of gasoline cars MPI and potentials of GPF. SAE Technical Paper 2018-01-0363 (2018)Google Scholar
  101. 101.
    Ristimaki, J., Keskinen, J., Virtanen, A., Maricq, M., Aakko, P.: Cold temperature PM emissions measurement: method evaluation and application to light duty vehicles. Environ. Sci. Technol. 39(24), 9424–9430 (2005)CrossRefGoogle Scholar
  102. 102.
    CA EPA, SAE Hybrid and EV Tech SymposiumGoogle Scholar
  103. 103.
    Wei, Q., Porter, S.: Evaluation of solid particle emissions from hybrid and conventional gasoline vehicles. SAE Int. J. Engines. 4(1), (2011)Google Scholar
  104. 104.
    Zinola, S., Raux, S., Leblanc, M.: Persistent particle number emissions sources at the tailpipe of combustion engines. SAE Technical Paper 2016-01-2283, (2016)Google Scholar
  105. 105.
    Joint Research Center: PMP IWG Progress Report. Informal document GRPE-75-17 (2016). http://www.unece.org/trans/main/wp29/wp29wgs/wp29grpe/grpeinf75.html
  106. 106.
    Huang, Y.-W., Wu, C., Aronstam, R.S.: Toxicity of transition metal oxide nanoparticles: recent insights from in vitro studies. Materials (Basel). 3(10), 4842–4859 (2010)CrossRefGoogle Scholar
  107. 107.
    Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., Cox, C.: Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 16(6-7), 437–445 (2004)CrossRefGoogle Scholar
  108. 108.
    Czerwinski, J., Comte, P., Heeb, N., Mayer, A. et al.: Nanoparticle emissions of DI gasoline cars with/without GPF, SAE Technical Paper 2017-01-1004. (2017)Google Scholar
  109. 109.
    Zimmerman, N., Wang, J. M., Jeong, C.-H., Ramos, M., et. al: Field measurements of gasoline direct injection emission factors: spatial and seasonal variability. Environ. Sci. Technol. (2016)Google Scholar
  110. 110.
    Karavalakis, G., Short, D., Vu, D., Yanf, J., Durbin, T.: Monoaromatic and polycyclical aromatic emissions from GDI and PFI Vehicles on ethanol and iso-butanol blends, presentation at the SAE Powertrain, Fuels, and Lubes Conference, Baltimore, October 2016Google Scholar
  111. 111.
    Muñoz Fernandez, M., Heeb, N.: PAH and nitro-PAH emissions from GDI vehicles, presentation at 19th ETH-Conference on Combustion Generated Nanoparticles June 28th–July 1st, 2015, ZurichGoogle Scholar
  112. 112.
    International Agency for Research on Cancer, Working Group on the Evaluation of Carcinogenic Risks to Humans. Ingested nitrate and nitrite, and cyanobacterial peptide toxins, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 94. Geneva, Switzerland, World Health Organisation (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Corning IncorporatedCorningUSA

Personalised recommendations