Advertisement

Emission Control Science and Technology

, Volume 3, Issue 4, pp 289–301 | Cite as

CFD Simulation of Liquid Back Suction and Gas Bubble Formation in a Circular Tube with Sudden or Gradual Expansion

  • Xuan CaiEmail author
  • Martin Wörner
  • Holger Marschall
  • Olaf Deutschmann
SPECIAL ISSUE: 2017 MODEGAT SEPTEMBER 3-5, BAD HERRENALB, GERMANY

Abstract

To avoid potential damage of the dosing unit in selective catalytic reduction by freezing urea-water-solution, the liquid is usually drained from the delivery line when the vehicle is out of operation. When liquid is sucked back counter to the normal delivery direction, the urea-water-solution is replaced by gas with the risk of air being sucked in. In this paper, we study the liquid back suction process and bubble formation numerically by interface-resolving simulations with a phase field method for a generic simplified geometry. We consider two connected circular tubes with sudden or gradual change of the diameter and provide guidelines for proper numerical setup of such flow problems in order to ensure physically reliable results. We study the influence of the geometry on the liquid draining process through variations of inner and outer tube diameters as well as transition inclination angle. The present numerical results indicate that geometrical modification is an effective means to control liquid draining in expanding pipes while preventing gas bubble formation.

Keywords

Urea-water-solution SCR Draining of delivery line CFD simulation Phase field method 

Notes

Acknowledgments

X.C. and O.D. acknowledge the support by the Deutsche Forschungsgemeinschaft through SFB/Transregio 150 project B05. H.M. acknowledges the support by the Deutsche Forschungsgemeinschaft through SFB 1194 project B02.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. 1.
    Koebel, M., Elsener, M., Marti, T.: NOx-reduction in diesel exhaust gas with urea and selective catalytic reduction. Combust. Sci. Technol. 121(1–6), 85–102 (1996)CrossRefGoogle Scholar
  2. 2.
    Koebel, M., Elsener, M., Kleemann, M.: Urea-SCR: a promising technique to reduce NOx emissions from automotive diesel engines. Catal. Today. 59(3–4), 335–345 (2000)CrossRefGoogle Scholar
  3. 3.
    Birkhold, F., Meingast, U., Wassermann, P., Deutschmann, O.: Analysis of the Injection of Urea-Water-Solution for Automotive SCR DeNOx-Systems: Modeling of Two-Phase Flow and Spray/Wall-Interaction. SAE Technical Paper 2006-01-0643 (2006)Google Scholar
  4. 4.
    Birkhold, F., Meingast, U., Wassermann, P., Deutschmann, O.: Modeling and simulation of the injection of urea-water-solution for automotive SCR DeNOx-systems. Appl. Catal. B-Environ. 70(1–4), 119–127 (2007)CrossRefGoogle Scholar
  5. 5.
    Deutschmann, O., Grunwaldt, J.D.: Exhaust gas aftertreatment in mobile systems: status, challenges, and perspectives. Chem. Ing. Tech. 85(5), 595–617 (2013)CrossRefGoogle Scholar
  6. 6.
    Brack, W., Heine, B., Birkhold, F., Kruse, M., Schoch, G., Tischer, S., Deutschmann, O.: Kinetic modeling of urea decomposition based on systematic thermogravimetric analyses of urea and its most important by-products. Chem. Eng. Sci. 106, 1–8 (2014)CrossRefGoogle Scholar
  7. 7.
    Brack, W., Heine, B., Birkhold, F., Kruse, M., Deutschmann, O.: Formation of urea-based deposits in an exhaust system: numerical predictions and experimental observations on a hot gas test bench. Emis. Contr. Sci. Technol. 2(3), 115–123 (2016)CrossRefGoogle Scholar
  8. 8.
    Nova, I., Tronconi, E.: Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts, Fundamental and Applied Catalysis. Springer, New York (2014)CrossRefGoogle Scholar
  9. 9.
    Nishioka, A., Sukegawa, Y., Katogi, K., Mamada, H., Kowatari, T., Mukai, T., Yokota, H.: A Study of a New Aftertreatment System (2): Control of Urea Solution Spray for Urea-SCR. SAE Technical Paper 2006-01-0644 (2006)Google Scholar
  10. 10.
    Stola, F., De Cesare, M., Lacchini, L., Cavina, N., Sohal, S.: Diesel Exhaust Fluid (DEF) Supply System Modelling for Control and Diagnosis Applications. SAE Technical Paper 2015-26-0090 (2015)Google Scholar
  11. 11.
    Shost, M., Noetzel, J., Wu, M.-C., Sugiarto, T., Bordewyk, T., Fulks, G., Fisher, G.B.: Monitoring, Feedback and Control of Urea SCR Dosing Systems for NOx Reduction: Utilizing an Embedded Model and Ammonia Sensing. SAE Technical Paper 2008-01-1325 (2008)Google Scholar
  12. 12.
    Kowatari, T., Hamada, Y., Amou, K., Hamada, I., Funabashi, H., Takakura, T., Nakagome, K.: A Study of a New Aftertreatment System (1): a New Dosing Device for Enhancing Low Temperature Performance of Urea-SCR. SAE Technical Paper 2006-01-0642 (2006)Google Scholar
  13. 13.
    Hüthwohl, G., Dolenec, S.: A New Approach in AdBlue Dosing to Improve Performance and Durability of SCR Systems for the Use in Passenger Cars up to Heavy Duty Vehicles. SAE Technical Paper 2011-01-2095 (2011)Google Scholar
  14. 14.
    Aus der Wiesche, S.: Numerical heat transfer and thermal engineering of AdBlue (SCR) tanks for combustion engine emission reduction. Appl. Therm. Eng. 27(11–12), 1790–1798 (2007)CrossRefGoogle Scholar
  15. 15.
    Choi, B., Woo, S.M.: Numerical analysis of the optimum heating pipe to melt frozen urea-water-solution of a diesel urea-SCR system. Appl. Therm. Eng. 89, 860–870 (2015)CrossRefGoogle Scholar
  16. 16.
    Kruse, C., Nagel, T., Schepers, S., Hodgson, J.: Method for draining a delivery unit for liquid additive, delivery unit and motor vehicle having a delivery unit. Patent EP 2844852 B1 (US 2015/0033712 A1) (2015)Google Scholar
  17. 17.
    Eriksson, L., Carlsson, U.: Method pertaining to air removal from a liquid supply system and a liquid supply ystem. Patent WO 2011/162693 A1 (2011)Google Scholar
  18. 18.
    Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139–165 (1998)CrossRefGoogle Scholar
  19. 19.
    Marschall, H., Cai, X., Wörner, M., Deutschmann, O. Development of Phase Field Methods Using OpenFOAM®—Part I: Method Development and Implementation. In: 10th International OpenFOAM® Workshop, Ann Arbor, 2015Google Scholar
  20. 20.
    Marschall, H., Cai, X., Wörner, M., Deutschmann, O.: Conservative finite volume discretization of the two-phase Navier-Stokes Cahn-Hilliard and Allen-Cahn equations on general grids with applications to dynamic wetting. In preparation (2017)Google Scholar
  21. 21.
    Cai, X., Marschall, H., Wörner, M., Deutschmann, O.: Numerical simulation of wetting phenomena with a phase-field method using OpenFOAM®. Chem. Eng. Technol. 38(11), 1985–1992 (2015)CrossRefGoogle Scholar
  22. 22.
    Cai, X., Wörner, M., Marschall, H., Deutschmann, O.: Numerical study on the wettability dependent interaction of a rising bubble with a periodic open cellular structure. Catal. Today. 273, 151–160 (2016)CrossRefGoogle Scholar
  23. 23.
    Jacqmin, D.: Calculation of two-phase Navier-Stokes flows using phase-field modeling. J. Comput. Phys. 155(1), 96–127 (1999)CrossRefGoogle Scholar
  24. 24.
    Weller, H.G.: A New Approach to VOF-Based Interface Capturing Methods for Incompressible and Compressible Low, Tech. Rep. TR/HGW/07, OpenCFD Ltd., (2006)Google Scholar
  25. 25.
    Wörner, M.: Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid. Nanofluid. 12(6), 841–886 (2012)CrossRefGoogle Scholar
  26. 26.
    Rowlinson, J.S.: Translation of J.D. Van der Waals “The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density”. J. Stat. Phys. 20(2), 197–244 (1979)CrossRefGoogle Scholar
  27. 27.
    Bray, A.J.: Theory of phase-ordering kinetics. Adv. Phys. 43(3), 357–459 (1994)CrossRefGoogle Scholar
  28. 28.
    Yue, P.T., Zhou, C.F., Feng, J.J.: Sharp-interface limit of the Cahn-Hilliard model for moving contact lines. J. Fluid Mech. 645, 279–294 (2010)CrossRefGoogle Scholar
  29. 29.
    Villanueva, W., Amberg, G.: Some generic capillary-driven flows. Int. J. Multiphase Flow. 32(9), 1072–1086 (2006)CrossRefGoogle Scholar
  30. 30.
    Kusumaatmaja, H., Hemingway, E.J., Fielding, S.M.: Moving contact line dynamics: from diffuse to sharp interfaces. J. Fluid Mech. 788, 209–227 (2016)CrossRefGoogle Scholar
  31. 31.
    Cox, R.G.: The dynamics of the spreading of liquids on a solid-surface, 1, viscous-flow. J. Fluid Mech. 168, 169–194 (1986)CrossRefGoogle Scholar
  32. 32.
    Kim, J.: A continuous surface tension force formulation for diffuse-interface models. J. Comput. Phys. 204(2), 784–804 (2005)CrossRefGoogle Scholar
  33. 33.
    He, Q.W., Kasagi, N.: Phase-field simulation of small capillary-number two-phase flow in a microtube. Fluid Dyn. Res. 40(7–8), 497–509 (2008)CrossRefGoogle Scholar
  34. 34.
    Jasak, H., Nilsson, H., Rusche, H., Beaudoin, M., Gschaider, B.: Release Notes for FOAM-Extend-3.2, https://sourceforge.net/p/foam-extend/foam-extend-3.2/ci/master/tree/ReleaseNotes.txt, The FOAM-Extend Project (2015)
  35. 35.
    Ding, H., Spelt, P.D.M., Shu, C.: Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comput. Phys. 226(2), 2078–2095 (2007)CrossRefGoogle Scholar
  36. 36.
    Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22(3), 1150013 (2012)CrossRefGoogle Scholar
  37. 37.
    Greenshields, C.: OpenFOAM User Guide, http://foam.sourceforge.net/docs/Guides-a4/UserGuide.pdf, CFD Direct Ltd. (2015)
  38. 38.
    Khatavkar, V.V., Anderson, P.D., Meijer, H.E.H.: Capillary spreading of a droplet in the partially wetting regime using a diffuse-interface model. J. Fluid Mech. 572, 367–387 (2007)CrossRefGoogle Scholar
  39. 39.
    Ding, H., Li, E.Q., Zhang, F.H., Sui, Y., Spelt, P.D.M., Thoroddsen, S.T.: Propagation of capillary waves and ejection of small droplets in rapid droplet spreading. J. Fluid Mech. 697, 92–114 (2012)CrossRefGoogle Scholar
  40. 40.
    Yue, P., Feng, J.J.: Can diffuse-interface models quantitatively describe moving contact lines? Eur. Phys. J. Spec. Top. 197(1), 37–46 (2011)CrossRefGoogle Scholar
  41. 41.
    Young, W.B.: Analysis of capillary flows in non-uniform cross-sectional capillaries. Colloids Surf. A Physicochem. Eng. Asp. 234(1–3), 123–128 (2004)CrossRefGoogle Scholar
  42. 42.
    Liou, W.W., Peng, Y.Q., Parker, P.E.: Analytical modeling of capillary flow in tubes of nonuniform cross section. J. Colloid Interface Sci. 333(1), 389–399 (2009)CrossRefGoogle Scholar
  43. 43.
    Berthier, J., Gosselin, D., Pham, A., Boizot, F., Delapierre, G., Belgacem, N., Chaussy, D.: Spontaneous capillary flows in piecewise varying cross section microchannels. Sensors Actuators B Chem. 223, 868–877 (2016)CrossRefGoogle Scholar
  44. 44.
    Erickson, D., Li, D., Park, C.B.: Numerical simulations of capillary-driven flows in nonuniform cross-sectional capillaries. J. Colloid Interface Sci. 250(2), 422–430 (2002)CrossRefGoogle Scholar
  45. 45.
    Mehrabian, H., Gao, P., Feng, J.J.: Wicking flow through microchannels. Phys. Fluids. 23(12), 122108 (2011)CrossRefGoogle Scholar
  46. 46.
    Figliuzzi, B., Buie, C.R.: Rise in optimized capillary channels. J. Fluid Mech. 731, 142–161 (2013)CrossRefGoogle Scholar
  47. 47.
    Yue, P., Zhou, C., Feng, J.J.: Spontaneous shrinkage of drops and mass conservation in phase-field simulations. J. Comput. Phys. 223(1), 1–9 (2007)CrossRefGoogle Scholar
  48. 48.
    Bretherton, F.P.: The motion of long bubbles in tubes. J. Fluid Mech. 10(2), 166–188 (1961)CrossRefGoogle Scholar
  49. 49.
    Bai, F., He, X., Yang, X., Zhou, R., Wang, C.: Three dimensional phase-field investigation of droplet formation in microfluidic flow focusing devices with experimental validation. Int. J. Multiphase Flow. 93, 130–141 (2017)CrossRefGoogle Scholar
  50. 50.
    Jamialahmadi, M., Zehtaban, M.R., Müller-Steinhagen, H., Sarrafi, A., Smith, J.M.: Study of bubble formation under constant flow conditions. Chem. Eng. Res. Des. 79(5), 523–532 (2001)CrossRefGoogle Scholar
  51. 51.
    Gerlach, D., Alleborn, N., Buwa, V., Durst, F.: Numerical simulation of periodic bubble formation at a submerged orifice with constant gas flow rate. Chem. Eng. Sci. 62(7), 2109–2125 (2007)CrossRefGoogle Scholar
  52. 52.
    Aland, S., Boden, S., Hahn, A., Klingbeil, F., Weismann, M., Weller, S.: Quantitative comparison of Taylor flow simulations based on sharp-interface and diffuse-interface models. Int. J. Numer. Methods Fluids. 73(4), 344–361 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institute of Catalysis Research and TechnologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  3. 3.Mathematical Modeling and Analysis, Department of MathematicsTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations