Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Landscape Connectivity Planning for Adaptation to Future Climate and Land-Use Change

Abstract

Purpose of Review

We examined recent literature on promoting habitat connectivity in the context of climate change (CC) and land-use change (LUC). These two global change forcings have wide-reaching ecological effects that are projected to worsen in the future. Improving connectivity is a common adaptation strategy, but CC and LUC can also degrade planned connections, potentially reducing their effectiveness. We synthesize advances in connectivity design approaches, identify challenges confronted by researchers and practitioners, and offer suggestions for future research.

Recent Findings

Recent studies incorporated future CC into connectivity design more often than LUC and rarely considered the two drivers jointly. When considering CC, most studies have focused on relatively broad spatial and temporal extents and have included either species-based targets or coarse-filter targets like geodiversity and climate gradients. High levels of uncertainty about future LUC and lack of consistent, readily available model simulations are likely hindering its inclusion in connectivity modeling. This high degree of uncertainty extends to efforts to jointly consider future CC and LUC.

Summary

We argue that successful promotion of connectivity as a means to adapt to CC and LUC will depend on (1) the velocity of CC, (2) the velocity of LUC, and (3) the degree of existing landscape fragmentation. We present a new conceptual framework to assist in identifying connectivity networks given these three factors. Given the high uncertainty associated with future CC and LUC, incorporating insights from decision science into connectivity planning will facilitate the development of more robust adaptation strategies.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior, RA, Börger L, Bennett DJ, Choimes A, Collen B, Day J, DePalma A, Díaz S. Global effects of land use on local terrestrial biodiversity. Nature. 2015;520:45–50. https://doi.org/10.1038/nature14324.

  2. 2.

    Settele J, Scholes R, Betts RA, Bunn S, Leadley P, Nepstad D, et al. Terrestrial and inland water systems. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, editors. Climate change 2014: impacts, adaptation and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, United Kingdom and New York, NY, USA; 2015. p. 271–359.

  3. 3.

    Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421:37–42.

  4. 4.

    Scheffers BR, De Meester L, Bridge TCL, Hoffmann AA, Pandolfi JM, Corlett RT, et al. The broad footprint of climate change from genes to biomes to people. Science. 2016;354:aaf7671.

  5. 5.

    Urban MC. Accelerating extinction risk from climate change. Science. 2015;348:571–3.

  6. 6.

    Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, et al. Habitat fragmentation and its lasting impact on Earth ecosystems. Sci Adv. 2015;e1500052:1–9.

  7. 7.

    Oliver TH, Morecroft MD. Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdiscip Rev Clim Chang. 2014;5:317–35.

  8. 8.

    Mantyka-Pringle CS, Visconti P, Di Marco M, Martin TG, Rondinini C, Rhodes JR. Climate change modifies risk of global biodiversity loss due to land-cover change. Biol Conserv Elsevier Ltd. 2015;187:103–11.

  9. 9.

    Groves CR, Game ET, Anderson MG, Cross M, Enquist C, Ferdaña Z, et al. Incorporating climate change into systematic conservation planning. Biodivers Conserv. 2012;21:1651–71.

  10. 10.

    Krosby M, Tewksbury J, Haddad NM, Hoekstra J. Ecological connectivity for a changing climate. Conserv Biol. 2010;24:1686–9.

  11. 11.

    Heller NE, Zavaleta ES. Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv. 2009;142:14–32.

  12. 12.

    Crooks KR, Sanjayan M. Connectivity conservation: maintaining connections for nature. Cambridge: Cambridge University Press; 2006.

  13. 13.

    Hilty JA, Lidicker W, Merenlender AM. Corridor ecology: the science and practice of linking landscapes for biodiversity conservation. Washignton, D.C.: Island Press; 2006.

  14. 14.

    Noss RF. Corridors in real landscapes: a reply to Simberloff and Cox. Conserv Biol. Wiley/Blackwell (10.1111). 1987;1:159–64.

  15. 15.

    Beier P, Noss RF. Do habitat corridors provide connectivity? Conserv Biol. Wiley/Blackwell (10.1111). 1998;12:1241–52.

  16. 16.

    Cross MS, Hilty JA, Tabor GM, Lawler JJ, Graumlich LJ, Berger J. From connect-the-dots to dynamic networks: maintaining and enhancing connectivity to address climate change impacts on wildlife. In: Brodie J, Doak D, Post E, editors. Climate change and wildlife conservation. Chicago: University of Chicago Press; 2013. p. 307–29.

  17. 17.

    Brost BM, Beier P. Use of land facets to design linkages for climate change. Ecol Appl. 2012;22:87–103.

  18. 18.

    McGuire JL, Lawler JJ, McRae BH, Nuñez TA, Theobald DM. Achieving climate connectivity in a fragmented landscape. Proc Natl Acad Sci. 2016;113:7195–200.

  19. 19.

    Nuñez TA, Lawler JJ, McRae BH, Pierce DJ, Krosby MB, Kavanagh DM, et al. Connectivity planning to address climate change. Conserv Biol. 2013;27:407–16.

  20. 20.

    Lawler JJ, Ruesch AS, Olden JD, McRae BH. Projected climate-driven faunal movement routes.Haddad N, editor. Ecol Lett. 2013;16:1014–22.

  21. 21.

    Dilts TE, Weisberg PJ, Leitner P, Matocq MD, Inman RD, Nussear KE, et al. Multiscale connectivity and graph theory highlight critical areas for conservation under climate change. Ecol Appl. 2016;26:1223–37.

  22. 22.

    Albert CH, Rayfield B, Dumitru M, Gonzalez A. Applying network theory to prioritize multispecies habitat networks that are robust to climate and land-use change. Conserv Biol. 2017;31:1383–96.

  23. 23.

    Rudnick DA, Ryan SJ, Beier P, Cushman SA, Dieffenbach F, Epps CW, et al. The role of landscape connectivity in planning and implementing conservation and restoration priorities. Issues Ecol. 2012;16:1–20.

  24. 24.

    Cushman SA, McRae B, Adriaensen F, Beier P, Shirley M, Zeller K. Biological corridors and connectivity. Key Top. Conserv. Biol. 2. Oxford: John Wiley & Sons; 2013. p. 384–404.

  25. 25.

    Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD. The velocity of climate change. Nature. 2009;462:1052–5.

  26. 26.

    Ordonez A, Martinuzzi S, Radeloff VC, Williams JW. Combined speeds of climate and land-use change of the conterminous US until 2050. Nat Clim Chang. 2014;4:811–6.

  27. 27.

    Weaver CP, Lempert R, Brown C, Hall JA, Revell D, Sarewitz D. Improving the contribution of climate model information to decision making: the value and demands of robust decision frameworks. Wiley Interdiscip Rev Chang. 111 RIVER ST, HOBOKEN 07030-5774, NJ USA: WILEY-BLACKWELL. 2013;4:39–60.

  28. 28.

    Brás R, Cerdeira JO, Alagador D, Araújo MB. Linking habitats for multiple species. Environ Model Softw Elsevier Ltd. 2013;40:336–9.

  29. 29.

    Kool JT, Moilanen A, Treml EA. Population connectivity: recent advances and new perspectives. Landsc Ecol. 2013;28:165–85.

  30. 30.

    Opdam P, Wascher D. Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biol Conserv. 2004;117:285–97.

  31. 31.

    Leonard PB, Sutherland RW, Baldwin RF, Fedak DA, Carnes RG, Montgomery AP. Landscape connectivity losses due to sea level rise and land use change. Anim Conserv. 2016.

  32. 32.

    Breckheimer I, Haddad NM, Morris WF, Trainor AM, Fields WR, Jobe RT, et al. Defining and evaluating the umbrella species concept for conserving and restoring landscape connectivity. Conserv Biol. 2014;28:1584–93.

  33. 33.

    Belote TR, Dietz MS, McRae BH, Theobald DM, McClure ML, Hugh Irwin G, et al. Identifying corridors among large protected areas in the United States. PLoS One. Public Libr Sci. 2016;11:e0154223.

  34. 34.

    Jaeger KL, Olden JD, Pelland NA. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proc Natl Acad Sci U S A. 2014;111:1–6.

  35. 35.

    Kostyack J, Lawler JJ, Goble DD, Olden JD, Scott JM. Beyond reserves and corridors: policy solutions to facilitate the movement of plants and animals in a changing climate. Bioscience. 2011;61:713–9.

  36. 36.

    Lacher I, Wilkerson ML. Wildlife connectivity approaches and best practices in U.S. State wildlife action plans. Conserv Biol. 2014;28:13–21.

  37. 37.

    Krosby M, Breckheimer I, John Pierce D, Singleton PH, Hall SA, Halupka KC, et al. Focal species and landscape “naturalness” corridor models offer complementary approaches for connectivity conservation planning. Landsc Ecol Springer Netherlands. 2015;30:2121–32.

  38. 38.

    Hamilton CM, Bateman BL, Gorzo JM, Reid B, Thogmartin WE, Peery MZ, et al. Slow and steady wins the race? Future climate and land use change leaves the imperiled Blanding’s turtle (Emydoidea blandingii) behind. Biol Conserv. 2018;222:75–85.

  39. 39.

    Choe H, Thorne JH, Hijmans R, Kim J, Kwon H, Seo C. Meta-corridor solutions for climate-vulnerable plant species groups in South Korea. Collen B, editor. J Appl Ecol. 2017;54:1742–54.

  40. 40.

    Wasserman TN, Cushman SA, Shirk AS, Landguth EL, Littell JS. Simulating the effects of climate change on population connectivity of American marten (Martes americana) in the northern Rocky Mountains, USA. USA Landsc Ecol. 2012;27:211–25.

  41. 41.

    Schloss CA, Nunez TA, Lawler JJ. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc Natl Acad Sci. 2012;109:8606–11.

  42. 42.

    Jones KR, Watson JEM, Possingham HP, Klein CJ. Incorporating climate change into spatial conservation prioritisation: a review. Biol Conserv. 2016;194:121–30.

  43. 43.

    Stanturf JA, Palik BJ, Dumroese RK. Contemporary forest restoration: a review emphasizing function. For Ecol Manage. Elsevier B.V. 2014;331:292–323.

  44. 44.

    Keppel G, Van Niel KP, Wardell-Johnson GW, Yates CJ, Byrne M, Mucina L, et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob Ecol Biogeogr. 2012;21:393–404.

  45. 45.

    Morelli TL, Daly C, Dobrowski SZ, Dulen DM, Ebersole JL, Jackson ST, et al. Managing climate change refugia for climate adaptation. PLoS One. 2016;11:1–17.

  46. 46.

    Makino A, Yamano H, Beger M, Klein CJ, Yara Y, Possingham HP. Spatio-temporal marine conservation planning to support high-latitude coral range expansion under climate change. Divers Distrib. 2014;20:859–71.

  47. 47.

    Alagador D, Cerdeira JO, Araujo MB. Shifting protected areas: scheduling spatial priorities under climate change. J Appl Ecol. 2014;51:703–13.

  48. 48.

    Alagador D, Cerdeira JO, Araujo MB. Climate change, species range shifts and dispersal corridors: an evaluation of spatial conservation models. Methods Ecol Evol. 2016;7:853–66.

  49. 49.

    Gillingham PK, Bradbury RB, Roy DB, Anderson BJ, Baxter JM, Bourn NAD, et al. The effectiveness of protected areas in the conservation of species with changing geographical ranges. Biol J Linn Soc. 2015;115:707–17.

  50. 50.

    Thomas CD, Gillingham PK, Bradbury RB, Roy DB, Anderson BJ, Baxter JM, et al. Protected areas facilitate species’ range expansions. Proc Natl Acad Sci. 2012;109:14063–8.

  51. 51.

    Strange N, Thorsen BJ, Bladt J, Wilson KA, Rahbek C. Conservation policies and planning under climate change. Biol Conserv. 2011;144:2968–77.

  52. 52.

    Taylor CM, Laughlin AJ, Hall RJ. The response of migratory populations to phenological change: a Migratory Flow Network modelling approach. Gill J, editor. J Anim Ecol. 2016;85:648–59.

  53. 53.

    Mallory ML, Ando AW. Implementing efficient conservation portfolio design. Resour Energy Econ. 2014;38:1–18.

  54. 54.

    Oliver TH, Brereton T, Roy DB. Population resilience to an extreme drought is influenced by habitat area and fragmentation in the local landscape. Ecography Blackwell Publishing Ltd. 2013;36:579–86.

  55. 55.

    Beier P. Conceptualizing and designing corridors for climate change. Ecol Restor. 2012;30:312–9.

  56. 56.

    Tingley MW, Darling ES, Wilcove DS. Fine- and coarse-filter conservation strategies in a time of climate change. Ann N Y Acad Sci. 2014;1322:92–109.

  57. 57.

    Beier P, Hunter ML, Anderson M. Introduction to special section: conserving nature’s stage. Conserv Biol. 2015;29:613–7.

  58. 58.

    Anderson MG, Ferree CE. Conserving the stage: climate change and the geophysical underpinnings of species diversity. PLoS One. 2010;5:e11554.

  59. 59.

    Hunter M, Jacobson JGL, Webb T. Paleoecology and the coarse-filter approach to mantaining biological diversity. Conserv Biol. 1988;375–85.

  60. 60.

    Noss RF. From plant communities to landscapes in conservation inventories: a look at the nature conservancy (USA). Biol Conserv. 1987;41:11–37.

  61. 61.

    Gray M. Geodiversity: developing the paradigm. Proc Geol Assoc The Geologists’ Association. 2008;119:287–98.

  62. 62.

    Gray M, Gordon JE, Brown EJ. Geodiversity and the ecosystem approach: The contribution of geoscience in delivering integrated environmental management. Proc Geol Assoc. The Geologists’ Association. 2013;124:659–73.

  63. 63.

    Beier P, Brost B. Use of land facets to plan for climate change: conserving the arenas. Not the Actors Conserv Biol. 2010;24:701–10.

  64. 64.

    Albano CM. Identification of geophysically diverse locations that may facilitate species’ persistence and adaptation to climate change in the southwestern United States. Landsc. Ecol. Springer Netherlands. 2015;30:1023–37.

  65. 65.

    Brost BM, Beier P. Comparing linkage designs based on land facets to linkage designs based on focal species. PLoS One. 2012;7:e48965.

  66. 66.

    Fremier AK, Kiparsky M, Gmur S, Aycrigg J, Craig RK, Svancara LK, et al. A riparian conservation network for ecological resilience. Biol Conserv. 2015;191:29–37.

  67. 67.

    Theobald DM, Reed SE, Fields K, Soulé M. Connecting natural landscapes using a landscape permeability model to prioritize conservation activities in the United States. Conserv Lett. 2012;5:123–33.

  68. 68.

    Henry E. Disturbance and conservation of at-risk butterflies. Ph.D. dissertation. North Carolina State University; 2018.

  69. 69.

    Lawler JJ, Ackerly DD, Albano CM, Anderson MG, Dobrowski SZ, Gill JL, et al. The theory behind, and the challenges of, conserving nature’s stage in a time of rapid change. Conserv Biol. 2015;29:618–29.

  70. 70.

    Walston LJ, Hartmann HM. Development of a landscape integrity model framework to support regional conservation planning. PLoS One. 2018;13:e0195115. https://doi.org/10.1371/journal.pone.0195115.

  71. 71.

    Jones B, O’Neill BC. Spatially explicit global population scenarios consistent with the shared socioeconomic pathways. Environ Res Lett. 2016;11:84003.

  72. 72.

    Sohl TL, Wimberly MC, Radeloff VC, Theobald DM, Sleeter BM. Divergent projections of future land use in the United States arising from different models and scenarios. Ecol Modell Elsevier B.V. 2016;337:281–97.

  73. 73.

    Sohl T, Sayler K, Bouchard M. Spatially explicit modeling of 1992 to 2100 land cover and forest stand age for the conterminous United States. Ecol Appl. 2014;24:1015–36.

  74. 74.

    Alexander P, Prestele R, Verburg P, Arneth A, Baranzelli C, Silva FBE, et al. Assessing uncertainties in land cover projections. Glob Chang Biol, 2016.

  75. 75.

    Titeux N, Henle K, Mihoub J-B, et al. Biodiversity scenarios neglect future land use change. Glob Chang Biol 2016;22:2505–15. https://doi.org/10.1111/gcb.13272.

  76. 76.

    Villemey A, van Halder I, Ouin A, Barbaro L, Chenot J, Tessier P, et al. Mosaic of grasslands and woodlands is more effective than habitat connectivity to conserve butterflies in French farmland. Biol Conserv. Elsevier B.V. 2015;191:20–215.

  77. 77.

    Bishop-Taylor R, Tulbure MG, Broich M. Evaluating static and dynamic landscape connectivity modelling using a 25-year remote sensing time series. Landsc Ecol. Springer Netherlands. 2018;33:625–40.

  78. 78.

    Trainor AM, Walters JR, Urban DL, Moody A. Evaluating the effectiveness of a safe harbor program for connecting wildlife populations. Anim Conserv. 2013;16:610–20.

  79. 79.

    Piquer-Rodríguez M, Torella S, Gavier-Pizarro G, Volante J, Somma D, Ginzburg R, et al. Effects of past and future land conversions on forest connectivity in the Argentine Chaco. Landsc Ecol . Springer Netherlands. 2015;30:817–33.

  80. 80.

    Mantyka-Pringle CS, Martin TG, Rhodes JR. Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Glob Chang Biol. 2012;18:1239–52.

  81. 81.

    Oliver TH, Gillings S, Pearce-Higgins JW, Brereton T, Crick HQP, Duffield SJ, et al. Large extents of intensive land use limit community reorganization during climate warming. Glob Chang Biol. 2017:1–12.

  82. 82.

    Cushman SA, Huettmann F, McGarigal K. Habitat fragmentation effects depend on complex interactions between population size and dispersal ability: modeling influences of roads, agriculture and residential development across a range of life-history characteristics. In: Cushman SA, Huettmann F, editors. Spatial complexity, informatics, and wildlife conservation. Tokyo: Springer; 2010. p. 369–85.

  83. 83.

    Cushman SA, Elliot NB, Macdonald DW, Loveridge AJ. A multi-scale assessment of population connectivity in African lions (Panthera leo) in response to landscape change. Landsc Ecol . Springer Netherlands. 2016;31:1337–53.

  84. 84.

    Wilson MC, Chen X-Y, Corlett RT, Didham RK, Ding P, Holt RD, et al. Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landsc Ecol Springer Netherlands. 2015;31:219–27.

  85. 85.

    Latimer CE, Zuckerberg B. Forest fragmentation alters winter microclimates and microrefugia in human-modified landscapes. Ecography. 2017;40:158–70.

  86. 86.

    Nogués S, Cabarga-Varona A. Modelling land use changes for landscape connectivity: the role of plantation forestry and highways. J Nat Conserv. 2014;22:504–15.

  87. 87.

    Leonard PB, Baldwin RF, Hanks RD. Landscape-scale conservation design across biotic realms: sequential integration of aquatic and terrestrial landscapes. Sci Rep. Nat Publ Group. 2017;7:14556.

  88. 88.

    Maxwell SL, Venter O, Jones KR, Watson JEM. Integrating human responses to climate change into conservation vulnerability assessments and adaptation planning. Ann N Y Acad Sci. 2015;1355:98–116.

  89. 89.

    Goh CS, Junginger M, Cocchi M, Marchal D, Thrän D, Hennig C, et al. Wood pellet market and trade: a global perspective. Biofuels Bioprod Biorefining. Wiley-Blackwell. 2013;7:24–42.

  90. 90.

    Kujala H, Moilanen A, Araújo MB, Cabeza M. Conservation planning with uncertain climate change projections. PLoS One. 2013;8.

  91. 91.

    Mouquet N, Lagadeuc Y, Devictor V, Doyen L, Duputié A, Eveillard D, et al. Predictive ecology in a changing world. J Appl Ecol. 2015;52:1293–310.

  92. 92.

    Coleman MA, Cetina-Heredia P, Roughan M, et al. Anticipating changes to future connectivity within a network of marine protected areas. Glob Chang Biol. 2017;23:3533–42.

  93. 93.

    Fischman RL, Ruhl JB. Judging adaptive management practices of U.S. agencies. Conserv Biol. 2016;30:268–75.

  94. 94.

    Terando AJ, Reich B, Pacifici K, Costanza J, McKerrow A, Collazo JA. Uncertainty quantification and propagation for projections of extremes in monthly area burned under climate change. In: Riley K, Webley P, Thompson M, editors. Natural hazard uncertainty assessment: modeling and decision support. Geophys Monogr. 223. John Wiley & Sons; 2017. p. 245–56.

  95. 95.

    Forester BR, Dechaine EG, Bunn AG. Integrating ensemble species distribution modelling and statistical phylogeography to inform projections of climate change impacts on species distributions. Divers Distrib. 2013;19:1480–95. https://doi.org/10.1111/ddi.12098

  96. 96.

    Meller L, Cabeza M, Pironon S, Barbet-Massin M, Maiorano L, Georges D, et al. Ensemble distribution models in conservation prioritization: from consensus predictions to consensus reserve networks. Divers Distrib. 2014;20:309–21.

  97. 97.

    Glick P, Stein BA, Edelson NA. Scanning the conservation horizon: a guide to climate change vulnerability assessment. Washington, DC, USA. 168 pages. 2011.

  98. 98.

    Iwamura T, Possingham HP, Chadès I, Minton C, Murray NJ, Danny I, et al. Migratory connectivity magnifies the consequences of habitat loss from sea-level rise for shorebird populations. Proc R Soc B-Biol Sci R Soc. 2013;280:1–8.

  99. 99.

    Watts K, Eycott AE, Handley P, Ray D, Humphrey JW, Quine CP. Targeting and evaluating biodiversity conservation action within fragmented landscapes: an approach based on generic focal species and least-cost networks. Landsc Ecol. 2010;25:1305–18.

  100. 100.

    Theobald DM. A general model to quantify ecological integrity for landscape assessments and US application. Landsc Ecol. 2013;28:1859–74.

  101. 101.

    Ackerly DD, Loarie SR, Cornwell WK, Weiss SB, Hamilton H, Branciforte R, et al. The geography of climate change: implications for conservation biogeography. Divers Distrib. 2010;16:476–87.

  102. 102.

    Carroll C, Roberts DR, Michalak JL, Lawler JJ, Nielsen SE, Stralberg D, et al. Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change. Glob Chang Biol. 2017;23:4508–20.

  103. 103.

    Comer PJ, Pressey RL, Hunter ML, Schloss CA, Buttrick SC, Heller NE, et al. Incorporating geodiversity into conservation decisions. Conserv Biol. 2015;29:692–701.

  104. 104.

    Maher SP, Morelli TL, Hershey M, Flint AL, Flint LE, Moritz C, et al. Erosion of refugia in the Sierra Nevada meadows network with climate change. Ecosphere. 2017;8:e01673.

  105. 105.

    Tukiainen H, Alahuhta J, Field R, Ala-Hulkko T, Lampinen R, Hjort J. Spatial relationship between biodiversity and geodiversity across a gradient of land-use intensity in high-latitude landscapes. Landsc Ecol 2017;32:1049–63

  106. 106.

    Caplat P, Edelaar P, Dudaniec RY, Green AJ, Okamura B, Cote J, et al. Looking beyond the mountain: dispersal barriers in a changing world. Front Ecol Environ. 2016;14:261–8.

  107. 107.

    McRae BH, Hall SA, Beier P, Theobald DM. Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. PLoS One. Public Libr Sci. 2012;7:e52604.

  108. 108.

    Perring MP, Standish RJ, Price JN, Craig MD, Erickson TE, Ruthrof KX, et al. Advances in restoration ecology: rising to the challenges of the coming decades. Ecosphere. 2015;6:art131.

  109. 109.

    Watson JEM, Iwamura T, Butt N. Mapping vulnerability and conservation adaptation strategies under climate change. Nat Clim Chang. 2013;3:989–94.

  110. 110.

    Mimet A, Houet T, Julliard R, Simon L. Assessing functional connectivity: a landscape approach for handling multiple ecological requirements. Methods Ecol Evol. 2013;4:453–63.

  111. 111.

    Saura S, Bodin Ö, Fortin M-J. Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. Frair J, editor. J Appl Ecol. 2014;51:171–82.

  112. 112.

    Razgour O. Beyond species distribution modeling: a landscape genetics approach to investigating range shifts under future climate change. Ecol Inform. 2015;30:250–6.

  113. 113.

    Dilkina B, Houtman R, Gomes CP, Montgomery CA, McKelvey KS, Kendall K, et al. Trade-offs and efficiencies in optimal budget-constrained multispecies corridor networks. Conserv Biol 2016;1–11.

  114. 114.

    Hodgson JA, Wallis DW, Krishna R, Cornell SJ. How to manipulate landscapes to improve the potential for range expansion. Methods Ecol Evol. 2016;7:1558–66.

  115. 115.

    Lempert R, Popper SW, Bankes SC. Robust decision making: coping with uncertainty. Futurist January-February. 2010. pp. 47–8.

  116. 116.

    Bhave AG, Conway D, Dessai S, Stainforth DA. Barriers and opportunities for robust decision making approaches to support climate change adaptation in the developing world. Clim Risk Manag. 2016;14:1–10.

Download references

Acknowledgments

We thank Nick Haddad and Amanda Chunco who provided comments on an early draft. We also thank Toni Lyn Morelli and two anonymous reviewers for helpful comments that greatly improved this manuscript. This research was supported by the Department of the Interior Southeast Climate Adaptation Science Center. Any use of trade, product, or firms names is for descriptive purposes only and does not imply endorsement by the US Geological Survey or the Department of Interior. This manuscript is submitted for publication with the understanding that the US Government is authorized to reproduce and distribute reprints for Governmental purposes.

Author information

Correspondence to Jennifer K. Costanza.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Landscape Change - Causes and Effects

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Costanza, J.K., Terando, A.J. Landscape Connectivity Planning for Adaptation to Future Climate and Land-Use Change. Curr Landscape Ecol Rep 4, 1–13 (2019). https://doi.org/10.1007/s40823-019-0035-2

Download citation

Keywords

  • Adaptation
  • Climate change
  • Climate velocity
  • Climate-land-use interaction
  • Coarse filter
  • Connectivity
  • Fine filter
  • Land-use change
  • Land-use velocity
  • Landscape fragmentation
  • Multiple scales
  • Uncertainty